Mechanism of Innate Immune Responses Against SARS-COV-2 Infection

Authors

  • Hiwa Abdulrahman Ahmad Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOYA45, Kurdistan Region-F.R. Iraq
  • Khalat Karwan Fares Midwifery Department, Koya Technical Institute, Erbil Polytechnic University, Erbil, 44001, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.4.18

Keywords:

Coronavirus, Toll-like Receptors, type Ⅰ Interferon, Dendritic cells, Innate Immunity

Abstract

The immunopathogenesis of the Coronaviruses (CoVs) is still under study. The innate immunity components can differentiate self and non-self-antigens, be involved in viral particle recognition, and restrict viral replications through antiviral protein expressions. Induction of antiviral innate immune responses against CoV vastly depends on recognizing pathogen-associated molecular pattern molecules (PAMPs) by pattern recognition receptors (PRRs). PAMPs mount the activation of (Toll-Like Receptors) TLR cascade and initiate transcription factors, involving Nuclear Factor- κB (NF-Κb), Interferon Regulatory Factors (IRF3), and (IRF7), and this results in the synthesize of Interferons (IFN) type Ⅰ. Subsequently, type Ⅰ IFN inhibit viral replications, regulate and modulate the immune system. Dendritic cells (DCs) reside in the respiratory tracts. They can recognize viral particles via TLR and initiate innate and adaptive immunity and repress viral spreads through IFNs production. Impairment of TLR, impediment of IFN expression, and/or disresponse of innate immune responses may be associated with tissue destruction after viral elimination. Here, emerging the reviews knowledge on the mechanism of non-specific immune responses against SARS-COV-2.

References

Ahmed, H. A.-R. and Al-Barzinji, R. M. (2009) 'Estimation of T-helper 1 Cytokines (IFN-y and TL-2) in HBV Infected patients and Individuals vaccinated with Recombinant HB Vaccine', Zanco Journal of Medical Sciences, 13(2), pp. 50-56.

Ahmed, H. A.-R. and Al-Barzinji, R. M. (2011) 'Estimation of some T-helper 2 cytokines (IL-4 and IL-10) in HBV Infected Patients and Individuals Vaccinated with Recombinant HB Vaccine', Tikrit Journal of Pure Science, 16(1).

Akira, S. and Hemmi, H. (2003) 'Recognition of pathogen-associated molecular patterns by TLR family', Immunology letters, 85(2), pp. 85-95.

Al-Zahrani, J. (2021) 'SARS-CoV-2 associated COVID-19 in geriatric population: A brief narrative review', Saudi Journal of Biological Sciences, 28(1), pp. 738.

Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., Pulendran, B. and Palucka, K. (2000) 'Immunobiology of dendritic cells', Annual review of immunology, 18(1), pp. 767-811.

Barton, G. M. and Medzhitov, R. (2003) 'Toll-like receptor signaling pathways', Science, 300(5625), pp. 1524-1525.

Bekisz, J., Schmeisser, H., Hernandez, J., Goldman, N. D. and Zoon, K. C. (2004) 'Mini ReviewHuman Interferons Alpha, Beta and Omega', Growth factors, 22(4), pp. 243-251.

Blbas, S. S., Ahmad, H. A., Hawezy, D. J., Shawgery, H. and Bahadin, H. N. (2021) 'Seroprevalence of Severe Acute Respiratory Syndrome-Coronavirus-2 Immunoglobulin M and Immunoglobulin G Antibodies among the Population of Koya University', ARO-The Scientific Journal of Koya University, 9(2), pp. 51-57.

Bosch, B. J., Martina, B. E., van der Zee, R., Lepault, J., Haijema, B. J., Versluis, C., Heck, A. J., de Groot, R., Osterhaus, A. D. and Rottier, P. J. (2004) 'Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides', Proceedings of the National Academy of Sciences, 101(22), pp. 8455-8460.

Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B. and Decroly, E. (2010) 'In vitro reconstitution of SARS-coronavirus mRNA cap methylation', PLoS pathogens, 6(4).

Cervantes-Barragan, L., Züst, R., Weber, F., Spiegel, M., Lang, K. S., Akira, S., Thiel, V. and Ludewig, B. (2007) 'Control of coronavirus infection through plasmacytoid dendritic-cell–derived type I interferon', Blood, 109(3), pp. 1131-1137.

Channappanavar, R., Fehr, Anthony R., Vijay, R., Mack, M., Zhao, J., Meyerholz, David K. and Perlman, S. (2016) 'Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice', Cell Host & Microbe, 19(2), pp. 181-193.

Chen, Y., Cai, H., Xiang, N., Tien, P., Ahola, T. and Guo, D. (2009) 'Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase', Proceedings of the National Academy of Sciences, 106(9), pp. 3484-3489.

Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z. and Tien, P. (2011) 'Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex', PLoS pathogens, 7(10).

Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H. and Doerr, H. (2003) 'Treatment of SARS with human interferons', The Lancet, 362(9380), pp. 293-294.

Dandekar, A. A. and Perlman, S. (2005) 'Immunopathogenesis of coronavirus infections: implications for SARS', Nature reviews immunology, 5(12), pp. 917-927.

Deng, X., van Geelen, A., Buckley, A. C., O’Brien, A., Pillatzki, A., Lager, K. M., Faaberg, K. S. and Baker, S. C. (2019) 'Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses', Journal of virology, 93(8), pp. e02000-18.

Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. and e Sousa, C. R. (2004) 'Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA', Science, 303(5663), pp. 1529-1531.

Dimonte, S., Jalal, P. J., Ahmad, H. A., Karim, S. B., Soor, T. A. H., Ali, S. I., Babakir-Mina, M. and Greco, F. (2020) 'Is The SARS-CoV2 Evolved in Human Being: A prospective Genetic Analysis', Kurdistan Journal of Applied Research, pp. 169-177.

Donnelly, R. P. and Kotenko, S. V. (2010) 'Interferon-lambda: a new addition to an old family', Journal of Interferon Cytokine Research, 30(8), pp. 555-564.

Ford, E., Thanos, D. and Me (2010) 'The transcriptional code of human IFN-β gene expression', Biochimica et Biophysica Acta -Gene Regulatory, 1799(3-4), pp. 328-336.

Freundt, E. C., Yu, L., Park, E., Lenardo, M. J. and Xu, X.-N. (2009) 'Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein', Journal of virology, 83(13), pp. 6631-6640.

Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S. A., Palese, P. and Baric, R. S. (2007) 'Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane', Journal of virology, 81(18), pp. 9812-9824.

García-Sastre, A. and Biron, C. A. (2006) 'Type 1 interferons and the virus-host relationship: a lesson in detente', Science, 312(5775), pp. 879-882.

Geijtenbeek, T. B., Engering, A. and Van Kooyk, Y. (2002) 'DC‐SIGN, a C‐type lectin on dendritic cells that unveils many aspects of dendritic cell biology', Journal of leukocyte biology, 71(6), pp. 921-931.

Gillim-Ross, L. and Subbarao, K. (2006) 'Emerging respiratory viruses: challenges and vaccine strategies', Clinical microbiology reviews, 19(4), pp. 614-636.

Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. and Amigorena, S. (2002) 'Antigen presentation and T cell stimulation by dendritic cells', Annual review of immunology, 20(1), pp. 621-667.

Hackbart, M., Deng, X. and Baker, S. C. (2020) 'Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors', Proceedings of the National Academy of Sciences, 117(14), pp. 8094-8103.

Hayden, M., West, A. and Ghosh, S. (2006) 'NF-κ B and the immune response', Oncogene, 25(51), pp. 6758-6780.

Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E. and Ziebuhr, J. (2004) 'Major genetic marker of nidoviruses encodes a replicative endoribonuclease', Proceedings of the National Academy of Sciences, 101(34), pp. 12694-12699.

Jeffers, S. A., Tusell, S. M., Gillim-Ross, L., Hemmila, E. M., Achenbach, J. E., Babcock, G. J., Thomas, W. D., Thackray, L. B., Young, M. D. and Mason, R. J. (2004) 'CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus', Proceedings of the National Academy of Sciences, 101(44), pp. 15748-15753.

Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K. G. and Makino, S. (2009) 'A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein', Nature structural molecular biology, 16(11), pp. 1134.

Kang, D.-c., Gopalkrishnan, R. V., Lin, L., Randolph, A., Valerie, K., Pestka, S. and Fisher, P. B. (2004) 'Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene', Oncogene, 23(9), pp. 1789-1800.

Kerrigan, A. M. and Brown, G. D. (2010) 'Syk‐coupled C‐type lectin receptors that mediate cellular activation via single tyrosine based activation motifs', Immunological reviews, 234(1), pp. 335-352.

Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H. H., Züst, R., Hwang, M., V’kovski, P. and Stalder, H. (2017) 'Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication', PLoS pathogens, 13(2), pp. e1006195.

Kindler, E., Thiel, V. and Weber, F. (2016) 'Interaction of SARS and MERS coronaviruses with the antiviral interferon response', Advances in virus research: Elsevier, pp. 219-243.

Kiziltaş, S. (2016) 'Toll-like receptors in pathophysiology of liver diseases', World Journal of Hepatology, 8, pp. 1354.

Knoops, K., Kikkert, M., van den Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., Mommaas, A. M. and Snijder, E. J. (2008) 'SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum', PLoS biology, 6(9).

Kopecky-Bromberg, S. A., Martínez-Sobrido, L., Frieman, M., Baric, R. A. and Palese, P. S. (2007) 'Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists', Journal of virology, 81(2), pp. 548-557.

Kovarik, P., Sauer, I. and Schaljo, B. (2008) 'Molecular mechanisms of the anti-inflammatory functions of interferons', Immunobiology, 212(9), pp. 895-901.

Kumar, S., Nyodu, R., Maurya, V. K. and Saxena, S. K. (2020) 'Host Immune Response and Immunobiology of Human SARS-CoV-2 Infection', Coronavirus Disease 2019 (COVID-19): Springer, pp. 43-53.

Kuo, L. and Masters, P. S. (2002) 'Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus', Journal of virology, 76(10), pp. 4987-4999.

Law, H. K., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., Nicholls, J. M., Peiris, J. M. and Lau, Y. L. (2005) 'Chemokine up-regulation in sars-coronavirus–infected, monocyte-derived human dendritic cells', Blood, 106(7), pp. 2366-2374.

Legge, K. L. and Braciale, T. J. (2003) 'Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection', Immunity, 18(2), pp. 265-277.

Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M. and Hoffmann, J. A. (1996) 'The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults', Cell, 86(6), pp. 973-983.

Levy, D. E. and Darnell, J. (2002) 'Stats: transcriptional control and biological impact', Nature reviews Molecular cell biology, 3(9), pp. 651-662.

Loo, Y.-M. and Gale Jr, M. (2011) 'Immune signaling by RIG-I-like receptors', Immunity, 34(5), pp. 680-692.

Lu, X., Pan, J. a., Tao, J. and Guo, D. (2011) 'SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism', Virus genes, 42(1), pp. 37-45.

Mariani, M. K., Dasmeh, P., Fortin, A., Caron, E., Kalamujic, M., Harrison, A. N., Hotea, D. I., Kasumba, D. M., Cervantes-Ortiz, S. L. and Mukawera, E. (2019) 'The combination of IFN β and TNF induces an antiviral and immunoregulatory program via Non-Canonical pathways involving STAT2 and IRF9', Cells, 8(8), pp. 919.

Marzi, A., Gramberg, T., Simmons, G., Möller, P., Rennekamp, A. J., Krumbiegel, M., Geier, M., Eisemann, J., Turza, N. and Saunier, B. (2004) 'DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus', Journal of virology, 78(21), pp. 12090-12095.

Molinari, N.-A. M., Ortega-Sanchez, I. R., Messonnier, M. L., Thompson, W. W., Wortley, P. M., Weintraub, E. and Bridges, C. B. (2007) 'The annual impact of seasonal influenza in the US: measuring disease burden and costs', Vaccine, 25(27), pp. 5086-5096.

Mukherjee, S., Huda, S. and Sinha Babu, S. P. (2019) 'Toll‐like receptor polymorphism in host immune response to infectious diseases: A review', Scandinavian journal of immunology, 90(1), pp. e12771.

Muller, U., Steinhoff, U., Reis, L., Hemmi, S., Pavlovic, J., Zinkernagel, R. M. and Aguet, M. (1994) 'Functional role of type I and type II interferons in antiviral defense', Science, 264(5167), pp. 1918-1921.

Peiris, J. S. M., Chu, C.-M., Cheng, V. C.-C., Chan, K., Hung, I., Poon, L. L., Law, K.-I., Tang, B., Hon, T. and Chan, C. (2003) 'Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study', The Lancet, 361(9371), pp. 1767-1772.

Perlman, S. (1998) 'Pathogenesis of coronavirus-induced infections', Coronaviruses and Arteriviruses: Springer, pp. 503-513.

Perlman, S. and Netland, J. (2009) 'Coronaviruses post-SARS: update on replication and pathogenesis', Nature reviews microbiology, 7(6), pp. 439-450.

Poeck, H., Bscheider, M., Gross, O., Finger, K., Roth, S., Rebsamen, M., Hannesschläger, N., Schlee, M., Rothenfusser, S. and Barchet, W. (2010) 'Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production', Nature immunology, 11(1), pp. 63.

Prompetchara, E., Ketloy, C. and Palaga, T. (2020) 'Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic', Asian Pac J Allergy Immunol, 38, pp. 1-9.

Raj, V. S., Mou, H., Smits, S. L., Dekkers, D. H., Müller, M. A., Dijkman, R., Muth, D., Demmers, J. A., Zaki, A. and Fouchier, R. A. (2013) 'Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC', Nature, 495(7440), pp. 251-254.

Shortman, K. and Liu, Y.-J. (2002) 'Mouse and human dendritic cell subtypes', Nature Reviews Immunology, 2(3), pp. 151-161.

Siu, K.-L., Kok, K.-H., Ng, M.-H. J., Poon, V. K., Yuen, K.-Y., Zheng, B.-J. and Jin, D.-Y. (2009) 'Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3· TANK· TBK1/IKKϵ complex', Journal of Biological Chemistry, 284(24), pp. 16202-16209.

Snijder, E. J., Van Der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J. J., van der Meulen, J., Koerten, H. K. and Mommaas, A. M. (2006) 'Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex', Journal of virology, 80(12), pp. 5927-5940.

Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y. and Qin, C. (2019) 'From SARS to MERS, thrusting coronaviruses into the spotlight', Viruses, 11(1), pp. 59.

Spiegel, M., Pichlmair, A., Mühlberger, E., Haller, O. and Weber, F. (2004) 'The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein', Journal of clinical virology, 30(3), pp. 211-213.

Sun, L., Xing, Y., Chen, X., Zheng, Y., Yang, Y., Nichols, D. B., Clementz, M. A., Banach, B. S., Li, K. and Baker, S. C. (2012) 'Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling', PloS one, 7(2).

To, E. E., Vlahos, R., Luong, R., Halls, M. L., Reading, P. C., King, P. T., Chan, C., Drummond, G. R., Sobey, C. G. and Broughton, B. R. (2017) 'Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy', Nature communications, 8(1), pp. 1-17.

Totura, A. L., Whitmore, A., Agnihothram, S., Schäfer, A., Katze, M. G., Heise, M. T. and Baric, R. S. (2015) 'Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection', MBio, 6(3), pp. e00638-15.

Tseng, C.-T. K., Perrone, L. A., Zhu, H., Makino, S. and Peters, C. (2005) 'Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection', The Journal of Immunology, 174(12), pp. 7977-7985.

Varga, J. F., Bui-Marinos, M. P. and Katzenback, B. A. (2019) 'Frog skin innate immune defences: sensing and surviving pathogens', Frontiers in immunology, 9, pp. 3128.

Vennema, H., Godeke, G.-J., Rossen, J., Voorhout, W., Horzinek, M., Opstelten, D. and Rottier, P. (1996) 'Nucleocapsid‐independent assembly of coronavirus‐like particles by co‐expression of viral envelope protein genes', The EMBO journal, 15(8), pp. 2020-2028.

Wang, C.-M., Chang, S.-W., Wu, Y.-J. J., Lin, J.-C., Ho, H.-H., Chou, T.-C., Yang, B., Wu, J. and Chen, J.-Y. (2014) 'Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population', Scientific reports, 4(1), pp. 1-9.

Weiss, S. R. and Navas-Martin, S. (2005) 'Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus', Microbiology molecular biology review, 69(4), pp. 635-664.

West, A. P., Shadel, G. S. and Ghosh, S. (2011) 'Mitochondria in innate immune responses', Nature Reviews Immunology, 11(6), pp. 389-402.

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H. and Pei, Y.-Y. (2020) 'A new coronavirus associated with human respiratory disease in China', Nature reviews Molecular cell biology, 579(7798), pp. 265-269.

Xagorari, A. and Chlichlia, K. (2008) 'Toll-like receptors and viruses: induction of innate antiviral immune responses', The open microbiology journal, 2, pp. 49.

Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W. and cell (2013) 'The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists', Protein, 4(12), pp. 951-961.

Yang, Z. Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.-P., Schwartz, O., Subbarao, K. and Nabel, G. J. (2004) 'pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN', Journal of virology, 78(11), pp. 5642-5650.

Yoneyama, M., Jogi, M. and Onomoto, K. (2016) 'Regulation of antiviral innate immune signaling by stress-induced RNA granules', The Journal of Biochemistry, 159(3), pp. 279-286.

Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.-M., Gale, M. and Akira, S. (2005) 'Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity', The Journal of Immunology, 175(5), pp. 2851-2858.

Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. and Fujita, T. (2015) 'Viral RNA detection by RIG-I-like receptors', Current opinion in immunology, 32, pp. 48-53.

Zheng, B., He, M.-L., Wong, K.-L., Lum, C. T., Poon, L. L., Peng, Y., Guan, Y., Lin, M. C., Kung, H.-F. J. o. i. and research, c. (2004) 'Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-α/β) but not by type II interferon (IFN-γ)', Journal of interferon, 24(7), pp. 388-390.

Zhou, P., Li, H., Wang, H., Wang, L.-F. and Shi, Z. (2012) 'Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities', Journal of general virology, 93(2), pp. 275-281.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B. and Huang, C.-L. (2020) 'A pneumonia outbreak associated with a new coronavirus of probable bat origin', Nature reviews Molecular cell biology, pp. 1-4.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W. and Lu, R. (2020) 'A novel coronavirus from patients with pneumonia in China, 2019', New England Journal of Medicine.

Zumla, A., Hui, D. S. and Perlman, S. T. L. (2015) 'Middle East respiratory syndrome', The Lancet, 386(9997), pp. 995-1007.

Zust, R., Cervantes-Barragan, L., Kuri, T., Blakqori, G., Weber, F., Ludewig, B. and Thiel, V. (2007) 'Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines', PLoS Pathogens, 3(8), pp. 1062-1073.

Published

2023-08-30

How to Cite

Hiwa Abdulrahman Ahmad, & Khalat Karwan Fares. (2023). Mechanism of Innate Immune Responses Against SARS-COV-2 Infection. Zanco Journal of Pure and Applied Sciences, 35(4), 180–191. https://doi.org/10.21271/ZJPAS.35.4.18

Issue

Section

Biology, Chemistry and Medical Researches