Demetallization of crude oil using Oxaline functionalized easily separable paramagnetic rust products

Authors

  • Cheman Dlshad Yousif Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
  • Essa Ismaeil Ahmed Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.4.16

Keywords:

Demetallization, deep eutectic solvents, absorbent/adsorbents, catalyst poisoning, corrosion, oxaline

Abstract

     The removal of catalyst poisoning compounds from crude oil or heavy oil fractions improves the efficiency of oil refineries and reduces the cost of high temperature corrosion damage during combustion. In this study, the demetallization of crude oil examined using readily separable paramagnetic rust particles functionalized with acidic choline chloride/oxalic acid (Oxaline) deep eutectic solvents (DESs). The functionalized particles were used as absorbent/adsorbents for organic and inorganic metal ions existing in crude oil specifically Ni, V, Mg, Ca, and Na. The functionalized particle samples are characterized using scanning electron microscopy /electron dispersive x-ray (SEM/EDX), x-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR). The optimum conditions for the removal of metallic constituents in terms of rust particle identity, absorbent/adsorbent dosage, temperature, and the type of employed DESs are studied. Inductively coupled plasma optical emission spectroscopy (ICP-OES) and flame atomic absorption (AAS) and flame atomic emission spectrometry (AES) are used for measuring elemental analysis.

References

ABBOTT, A. P. 2004. Application of hole theory to the viscosity of ionic and molecular liquids. PCCP, 5, 1242-1246.

ABBOTT, A. P., BOOTHBY, D., CAPPER, G., DAVIES, D. L. & RASHEED, R. K. 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126, 9142-9147.

ABBOTT, A. P., CAPPER, G., DAVIES, D. L., RASHEED, R. K. & TAMBYRAJAH, V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb), 70-1.

ABBOTT, A. P., EDLER, K. J. & PAGE, A. J. 2021. Deep eutectic solvents—The vital link between ionic liquids and ionic solutions. The Journal of Chemical Physics, 155, 150401.

ABBOTT, A. P., GLEN CAPPER, DAVID L. DAVIES, KATY J. MCKENZIE, A. & OBI, S. U. 2006. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. Data, 51, 1280-1282.

ADEBIYI, F. M. & OYEDELE, J. T. 2022. Liquid–liquid-mediated extraction of metals from crude oils using tetramethylammonium hydroxide pentahydrate ionic liquid. Petroleum Science and Technology, 40, 787-802.

AL-ATTAS, T. A., ALI, S. A., ZAHIR, M. H., XIONG, Q., AL-BOGAMI, S. A., MALAIBARI, Z. O., RAZZAK, S. A. & HOSSAIN, M. M. 2019. Recent advances in heavy oil upgrading using dispersed catalysts. Energy Fuels, 33, 7917-7949.

ALI, M. F. & ABBAS, S. 2006. A review of methods for the demetallization of residual fuel oils. Fuel Processing Technology, 87, 573-584.

ATTIA, M., FARAG, S., JAFFER, S. A. & CHAOUKI, J. 2020. Metal and sulfur removal from petroleum oil using a novel demetallization-desulfurization agent and process. Journal of Cleaner Production, 275, 124177.

CHAUHAN, G. & DE KLERK, A. 2020. Extraction of vanadium and nickel from diluted bitumen and partially deasphalted oil using ionic liquids. Energy Fuels, 34, 10849-10857.

DECHAINE, G. P. & GRAY, M. R. 2010. Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal. Energy Fuels, 24, 2795-2808.

EL ACHKAR, T., GREIGE-GERGES, H. & FOURMENTIN, S. 2021. Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 19, 3397-3408.

FERREIRA, C., TAYAKOUT-FAYOLLE, M., GUIBARD, I., LEMOS, F., TOULHOAT, H. & RIBEIRO, F. R. 2012. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: Characterization and reactivity. Fuel, 98, 218-228.

FINGAS, M. 2022. The Chemistry of Oil and Petroleum Products, De Gruyter.

HÄKKINEN, R. & ABBOTT, A. P. 2021. Deep eutectic solvents—Teaching nature lessons that it knew already. Advances in Botanical Research. Elsevier.

HANSEN, B. B., SPITTLE, S., CHEN, B., POE, D., ZHANG, Y., KLEIN, J. M., HORTON, A., ADHIKARI, L., ZELOVICH, T. & DOHERTY, B. W. 2020. Deep eutectic solvents: A review of fundamentals and applications. Chemical reviews, 121, 1232-1285.

IEA 2021. Oil analysis and forecast to 2026. France: IEA.

JENIFER, A. C., SHARON, P., PRAKASH, A. & SANDE, P. C. 2015. A review of the unconventional methods used for the demetallization of petroleum fractions over the past decade. Energy Fuels, 29, 7743-7752.

JOHN G. REYNOLDS , E. C., CALIF. 1989. Demetalation of hydrocarbonaceous feedstocks using dibasic carboxylic acids and salts thereof. USA patent application 164,597.

KURNIAWAN, Y. S. 2021. The Origin, Physicochemical Properties, and Removal Technology of Metallic Porphyrins from Crude Oils. Indonesian Journal of Chemistry, 21, 1023-1038.

M.R. RIAZI, S. E., SURESH S. AGRAWAL, AND JOSÉ LUIS PEÑA DÍEZ, 2013. Petroleum Refining and Natural Gas Processing, ASTM International.

MAGOMEDOV, R., POPOVA, A., MARYUTINA, T., KADIEV, K. M. & KHADZHIEV, S. 2015. Current status and prospects of demetallization of heavy petroleum feedstock. Petroleum Chemistry, 55, 423-443.

MUSTAFIN, I. A., SHEVCHENKO, A. A., GILMANSHINA, K. A. & KRASILNIKOVA, Y. V. 2017. The demetallization of west Siberian crude oil and its residues. International Journal of Applied Engineering Research, 12, 2338-2341.

PERNA, F. M., VITALE, P. & CAPRIATI, V. 2020. Deep eutectic solvents and their applications as green solvents. Current Opinion in Green Sustainable Chemistry, 21, 27-33.

PLECHKOVA, N. V. & SEDDON, K. R. 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37, 123-150.

S. ABBAS , Z. T. MAQSOOD, A. & ALI, M. F. 2010. The Demetallization of Residual Fuel Oil and Petroleum Residue. Petroleum Science and Technology, 28, 1770-1777.

SHISHOV, A., BULATOV, A., LOCATELLI, M., CARRADORI, S. & ANDRUCH, V. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchemical journal, 135, 33-38.

SMITH, E. L., ABBOTT, A. P. & RYDER, K. S. 2014. Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114, 11060-11082.

TAHIR, S., QAZI, U. Y., NASEEM, Z., TAHIR, N., ZAHID, M., JAVAID, R. & SHAHID, I. 2021. Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: A comprehensive review. Fuel, 305, 121502.

TAMER, A. D., MOHAMMED, F. Q., MAHMOOD, L. H., HUSSEIN, M. & HANYN, M. M. 2019. Study on Removal of Vanadium from Iraqi Crude Oil by Prepared Nanozeolites. Engineering Technology Journal, 37, 188-194.

TU, S. P. & YEN, T. F. 2000. The feasibility studies for radical-induced decomposition and demetalation of metalloporphyrins by ultrasonication. Energy fuels, 14, 1168-1175.

YAN, T., XU, J., WANG, L., LIU, Y., YANG, C. & FANG, T. 2015. A review of upgrading heavy oils with supercritical fluids. RSC advances, 5, 75129-75140.

Published

2023-08-30

How to Cite

Cheman Dlshad Yousif, & Essa Ismaeil Ahmed. (2023). Demetallization of crude oil using Oxaline functionalized easily separable paramagnetic rust products. Zanco Journal of Pure and Applied Sciences, 35(4), 160–170. https://doi.org/10.21271/ZJPAS.35.4.16

Issue

Section

Biology, Chemistry and Medical Researches