Mutations in the Interleukin-15 Gene as a Molecular Biomarker in the Atherosclerosis Disease.

Authors

  • Sarbaz I. Mohammed Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.5.8

Keywords:

Atherosclerosis, C-reactive protein, Hemoglobin A1c, Interleukin-15, Troponin T-hs

Abstract

     The present study investigated the association between mutations in the gene of interleukin (IL)-15 located on exon 8 and the risk of atherosclerosis in Iraqi patients. A total of 87 patients (71 males and 16 females) with atherosclerosis prior to [Coronary Artery Bypass Graft (CABG) surgery] median age, 57 years and 30 subjects with no CVD (median age, 58.5 years) were enrolled at the Surgical Specialty Hospital of Cardiac Center-Erbil-Iraq between April 2021 and February 2022. Genotype analysis was achieved using a polymerase chain reaction (PCR) and Sanger DNA sequencing and clinical biochemistry were achieved by Cobas 311and e411 analyzers. The IL-15 homozygous rs2291596 (53.3%) and rs10833 (100%) genotypes appeared in peak frequencies and were related to a risk of the progress of atherosclerosis. In comparison, the remaining two novel mutations exhibited a low frequency for the 97264 G>GC genotype (13.3%) and the 97270 G>GT genotype (26.7%). Significant changes were observed in serum C-reactive protein (CRP) levels, the erythrocyte sedimentation rate (ESR), and high-density lipoprotein (HDL), alkaline phosphatase (ALP), blood fasting glucose, hemoglobin A1c (HbA1c) and troponin T-hs levels in the patients with atherosclerosis compared with those of the non-CVD subjects. Finally, it was concluded that the IL-15 mutations may play an essential role in the development and prognostic prediction of blood vessel atherosclerosis.

References

ABDELAZIZ, S. S., EL-GHARBAWY, N. H., MADKOUR, S. S., AMIN, I. R. & REDA, M. A. 2021. Potential role of high sensitivity cardiac troponin T in subclinical coronary atherosclerosis in systemic lupus erythematosus patients. The Egyptian Rheumatologist, 43, 65-70.

ANGELES-MARTíNEZ, J., POSADAS-SáNCHEZ, R., PEREZ-HERNáNDEZ, N., RODRíGUEZ-PEREZ, J. M., FRAGOSO, J. M., BRAVO-FLORES, E., POSADAS-ROMERO, C. & VARGAS-ALARCóN, G. 2017. IL-15 polymorphisms are associated with subclinical atherosclerosis and cardiovascular risk factors. The Genetics of Atherosclerosis Disease (GEA) Mexican Study. Cytokine, 99, 173-178.

BJöRKEGREN, J. L. M. & LUSIS, A. J. 2022. Atherosclerosis: Recent developments. Cell, 185, 1630-1645.

CHAULIN, A. M. 2021a. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 1. Life, 11, 914.

CHAULIN, A. M. 2021b. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 2. Life, 11, 1175.

CHEHAIBI, K., TRABELSI, I., MAHDOUANI, K. & SLIMANE, M. N. 2016. Correlation of oxidative stress parameters and inflammatory markers in ischemic stroke patients. Journal of Stroke and Cerebrovascular Diseases, 25, 2585-2593.

DOZIO, E., MALAVAZOS, A. E., VIANELLO, E., BRIGANTI, S., DOGLIOTTI, G., BANDERA, F., GIACOMAZZI, F., CASTELVECCHIO, S., MENICANTI, L. & SIGRUENER, A. 2014. Interleukin-15 and soluble interleukin-15 receptor α in coronary artery disease patients: association with epicardial fat and indices of adipose tissue distribution. PloS one, 9, e90960.

GHATAK, S., MUTHUKUMARAN, R. B. & NACHIMUTHU, S. K. 2013. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech, 24, 224-31.

GOKKUSU, C., AYDIN, M., OZKOK, E., TULUBAS, F., ELITOK, A., PAMUKCU, B. & UMMAN, B. 2010. Influences of genetic variants in interleukin-15 gene and serum interleukin-15 levels on coronary heart disease. Cytokine, 49, 58-63.

GUO, L., LIU, M. F., HUANG, J. N., LI, J. M., JIANG, J. & WANG, J. A. 2020. Role of interleukin‐15 in cardiovascular diseases. Journal of cellular and molecular medicine, 24, 7094-7101.

HAMZEI, B., SHEIDAEIAN, T., BAHADORZEHI, N., SHEIBANI, P., AKBARI, M., AKBARI, S., GHOLIZADE, S., TABATABAE, M. S., DOLATABADI, N. F. & KIANPOUR, F. 2020. Involvement of single nucleotide polymorphisms in acute lymphoblastic leukemia susceptibility. Gene Reports, 21, 100971.

HANSSON, G. 2005. Inflammation, atherosclerosis, and coronary artery disease-Reply. New England Journal of Medicine, 353, 429-430.

HU, X., LI, W., WANG, C., ZHANG, H., LU, H., LI, G., ZHOU, Y. & DONG, H. 2021. Association between the Plasma-Glycosylated Hemoglobin A1c/High-Density Lipoprotein Cholesterol Ratio and Carotid Atherosclerosis: A Retrospective Study. Journal of Diabetes Research, 2021.

JACKSON, A.-O., REGINE, M. A., SUBRATA, C. & LONG, S. 2018. Molecular mechanisms and genetic regulation in atherosclerosis. IJC heart & vasculature, 21, 36-44.

KAYA, Z., KATUS, H. A. & ROSE, N. R. 2010. Cardiac troponins and autoimmunity: their role in the pathogenesis of myocarditis and of heart failure. Clin Immunol, 134, 80-8.

KOYAMA, K., YONEYAMA, K., MITARAI, T., ISHIBASHI, Y., TAKAHASHI, E., KONGOJI, K., HARADA, T. & AKASHI, Y. J. 2015. Association between inflammatory biomarkers and thin-cap fibroatheroma detected by optical coherence tomography in patients with coronary heart disease. Archives of Medical Science, 11, 505-512.

KUNUTSOR, S. K., BAKKER, S. J., KOOTSTRA-ROS, J. E., GANSEVOORT, R. T., GREGSON, J. & DULLAART, R. P. 2015. Serum Alkaline Phosphatase and Risk of Incident Cardiovascular Disease: Interrelationship with High Sensitivity C-Reactive Protein. PLoS One, 10, e0132822.

LI, L., SELVIN, E., HOOGEVEEN, R. C., SOLIMAN, E. Z., CHEN, L. Y., NORBY, F. L. & ALONSO, A. 2021. 6‐year change in high sensitivity cardiac troponin T and the risk of atrial fibrillation in the Atherosclerosis Risk in Communities cohort. Clinical cardiology, 44, 1594-1601.

MA, R., LU, T., LI, Z., TENG, K.-Y., MANSOUR, A. G., YU, M., TIAN, L., XU, B., MA, S. & ZHANG, J. 2021. An oncolytic virus expressing IL15/IL15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer research, 81, 3635-3648.

MEGHNEM, D., MORISSEAU, S., FRUTOSO, M., TRILLET, K., MAILLASSON, M., BARBIEUX, I., KHADDAGE, S., LERAY, I., HILDINGER, M. & QUEMENER, A. 2017. Cutting edge: Differential fine-tuning of IL-2–and IL-15–dependent functions by targeting their common IL-2/15Rβ/γc receptor. The Journal of Immunology, 198, 4563-4568.

NDREPEPA, G. 2017. Alkaline phosphatase and cardiovascular disease. J Lab Precis Med, 2, 83.

OLSEN, S. K., OTA, N., KISHISHITA, S., KUKIMOTO-NIINO, M., MURAYAMA, K., UCHIYAMA, H., TOYAMA, M., TERADA, T., SHIROUZU, M. & KANAGAWA, O. 2007. Crystal structure of the interleukin-15• interleukin-15 receptor α complex: insights into trans and cis presentation. Journal of Biological Chemistry, 282, 37191-37204.

ORASANU, G. & PLUTZKY, J. 2009. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol, 53, S35-42.

PANIGRAHI, S., CHEN, B., FANG, M., POTASHNIKOVA, D., KOMISSAROV, A. A., LEBEDEVA, A., MICHAELSON, G. M., WYRICK, J. M., MORRIS, S. R. & SIEG, S. F. 2020. CX3CL1 and IL-15 Promote CD8 T cell chemoattraction in HIV and in atherosclerosis. PLoS pathogens, 16, e1008885.

PARK, K.-H. & PARK, W. J. 2015. Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches. Journal of Korean medical science, 30, 1213-1225.

RAMJI, D. P. & DAVIES, T. S. 2015. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine & growth factor reviews, 26, 673-685.

ROSSELLO, X., RAPOSEIRAS-ROUBIN, S., OLIVA, B., SáNCHEZ-CABO, F., GARCíA-RUíZ, J. M., CAIMARI, F., MENDIGUREN, J. M., LARA-PEZZI, E., BUENO, H. & FERNáNDEZ-FRIERA, L. 2021. Glycated hemoglobin and subclinical atherosclerosis in people without diabetes. Journal of the American College of Cardiology, 77, 2777-2791.

SEO, J. W. & PARK, S. B. 2021. The association of hemoglobin A1c and fasting glucose levels with hs-CRP in adults not diagnosed with diabetes from the KNHANES, 2017. Journal of Diabetes Research, 2021.

SPOSATO, L. A., HILZ, M. J., ASPBERG, S., MURTHY, S. B., BAHIT, M. C., HSIEH, C.-Y., SHEPPARD, M. N., SCHEITZ, J. F., BRAIN, W. S. O. & FORCE, H. T. 2020. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. Journal of the American College of Cardiology, 76, 2768-2785.

TURILLAZZI, E., DI PAOLO, M., NERI, M., RIEZZO, I. & FINESCHI, V. 2014. A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. Journal of translational medicine, 12, 1-10.

VAN ES, T., VAN PUIJVELDE, G. H., MICHON, I. N., VAN WANROOIJ, E. J., DE VOS, P., PETERSE, N., VAN BERKEL, T. J. & KUIPER, J. 2011. IL-15 aggravates atherosclerotic lesion development in LDL receptor deficient mice. Vaccine, 29, 976-983.

WANG, X., WANG, P., CAO, R., YANG, X., XIAO, W., ZHANG, Y., SHENG, L. & YE, P. 2021. High-Sensitivity Cardiac Troponin T Is a Risk Factor for Major Adverse Cardiovascular Events and All-Cause Mortality: A 9.5-Year Follow-Up Study. Cardiology Research and Practice, 2021.

XIE, D., HU, D., ZHANG, Q., SUN, Y., LI, J. & ZHANG, Y. 2016. Increased high-sensitivity C-reactive protein, erythrocyte sedimentation rate and lactic acid in stroke patients with internal carotid artery occlusion. Archives of Medical Science, 12, 546-551.

Published

2023-10-25

How to Cite

Sarbaz I. Mohammed. (2023). Mutations in the Interleukin-15 Gene as a Molecular Biomarker in the Atherosclerosis Disease. Zanco Journal of Pure and Applied Sciences, 35(5), 95–102. https://doi.org/10.21271/ZJPAS.35.5.8

Issue

Section

Biology, Chemistry and Medical Researches