Bacterial Population of Alfalfa (Medicago sativa L.) Plant Nodules in Koya city

no subtitle

Authors

  • Sara Sherzad Ali Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq
  • Hikmat Mustafa Masyab Department of Biology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq
  • Ayad H.Hasan Department of Medical Microbiology, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.4.23

Keywords:

alfa alfa, Rhizobium, Root nodulating bacteria, 16sRNA, nifH.

Abstract

Global food productivity is severely hampered by soil nutrients deficiencies. The use of synthetic nitrogenous fertilizers is widespread cultivation practice to improve agricultural output. Other non-symbiotic endophytic bacteria have also been identified within the same root nodules at the same time as rhizobacteria. It is a common occurrence for non-symbiotic soil microbes to reside in leguminous nodulation. In the current study, Rhizobia and non-symbiotic commensal bacteria that promote plant development were isolated from the native leguminous Medicago sativa. According to our analysis, these non-symbiotic microbes are frequently found inside root nodules and work in concert with rhizobacteria to enhance nodulation and nitrogen fixation in legume crops. The current research work aimed to isolate identification & characterizing root nodulating species from wild alfalfa (Medicago sativa. L) plant nodules collected from different regions of Koya city in the Erbil district. Isolation of these species was done by culturing on YEMA (Yeast Extract Mannitol Agar) medium and incubation period of 48 hours at 30 °C. The sample identification was processed using standard microbiological and biochemical techniques as well as 16S rDNA partial sequence and nifH gene. Results showed that thirty nodule samples yielded a total of two Rhizobium species isolates, one of them was recorded in NCBI as a new strain. The others were found to be Pseudomonas and Enterobacter, Rahnella and Erwinia respectively. The findings suggested that lateral gene transfer (LGT) between non-symbiotic endophytic bacteria and rhizobacteria may have taken place.

References

Acosta-Jurado, S., Fuentes-Romero, F., Ruiz-Sainz, J.-E., Janczarek, M., Vinardell, J.-M. 2021. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int. J. Mol. Sci., 22, 6233. https://doi.org/10.3390/ijms22126233.

Azib, S., Idder, A., Attab, S., Bensalem, S., Djeroudi, O. 2022. Antagonistic activity of Sinorhizobium meliloti strains against pathogenic fungi isolated from alfalfa in Algerian Sahara. International Journal of Biosciences (IJB) 20(2):247-254

Banjare, U., Patel, A. K., Pandey, A. K., Kumar, S., Gupta, S. K. and Singh, R. K. 2022. Morphological & biochemical characterization of root Nodulating Endosymbionts of lentil (Lens culinaris Medik L.). The Pharma Innovation Journal. 11(6): 1671-1677.

Batista, J.S.S., Hungria, M., . Barcellos, F.G., Ferreira, M.C., Mendes, I.C. 2007. Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a cerrados soil. Microbial Ecology, vol. 53, no. 2, pp. 270-284.

Dhole, A., Shelat, H., Vyas, R., Jhala, Y., Bhange, M. 2016. Endophytic occupation of legume root nodules by nifH-positive nonrhizobial bacteria, and their efficacy in the groundnut (Arachis hypogaea). Ann Microbiol 66:1–11.

Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences, 22, 107-149.

Elbehiry, A., Marzouk, E., Aldubaib, M. Moussa, I., Abalkhail, A., Ibrahem, M., Hamada, M., Sindi, W., Alzaben, F. and Almuzaini, A. M. 2022. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB Expr 12, 1-14. https://doi.org/10.1186/s13568-022-01390-1

Etesami, H. 2022. Root nodules of legumes: a suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Current Research in Biotechnology. DOI: 10.1016/j.crbiot.2022.01.003

Gopalakrishnan, S., Srinivas, V., Prakash, B., Sathya, A. and Vijayabharathi, R. 2015. Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech, 5, 653-661.

Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., Masso, C., 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8.

Koskey, G., Mburu, S. W., Kimiti, J. M., Ombori, O., Maingi, J. M. and Njeru, E. M. 2018. Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Frontiers in microbiology, 9, 968.

Leite, J., Fischer, D., Rouws, L.F.M., Fernandes-Júnior, P.I., Hofmann, A., Kublik, S.,Schloter, M., Xavier, G.R., Radl, V. 2017. Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front. Plant Sci. 7, 2064.

Lindstrom, K. and Mousavi, S. A. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial biotechnology, 13, 1314-1335.

Lu, J., Yang, F., Wang, S., Ma, H., Liang, J., Chen, Y. 2017. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium like and Burkholderia pyrrocinia like strains. Front. Microbiol. 8.

Martinez, A. V., Medina, R., Gauna, J. M. and Balatti, P. A. 2020. Bacterial endophytes diversity of tree legumes from Argentina. Agrociencia (Uruguay), 24.

Martínez-Hidalgo, P., Hirsch, A.M. 2017. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1, 70–82.

Martínez-Hidalgo, P., Humm, E.A., Still, D.W. 2022. Medicago root nodule microbiomes: insights into a complex ecosystem with potential candidates for plant growth promotion. Plant Soil 471, 507–526. https://doi.org/10.1007/s11104-021-05247-7.

Mir, M. I., Kumar, B. K., Goplakrishnan, S., Vadlamudi, S. and Hameeda, B. 2021. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon, 7, e08321.

Mohammed, A., Sultan, R. 2021. Isolation and Characterization of Local Isolates of Rhizobia in Nineveh Governorate/Iraq. JOURNAL OF EDUCATION AND SCIENCE. 30. 83-94. 10.33899/edusj.2021.168657.

Nusrat, N., Anoara, B. and Humaira, A. 2017. Isolation, identification and molecular characterization of Rhizobium species from Sesbania bispinosa cultivated in Bangladesh. African Journal of Agricultural Research, 12, 1874-1880.

Rasmi, A. H., Ahmed, E. F., Darwish, A. M. A. and Gad, G. F. M. 2022. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. BMC Infectious Diseases, 22, 1-12.

Schlaberg R, Simmon KE and Fisher MA. 2012. A Systematic Approach for Discovering Novel, Clinically Relevant Bacteria. Emerg Infect Dis., 18 (3): 422-430.

Schulte, C. C., Ramachandran, V. K., Papachristodoulou, A. and Poole, P. S. 2022. Genome-scale metabolic modelling of lifestyle changes in Rhizobium leguminosarum. Msystems, 7, e00975-21.

Stackebrandt E. and Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today, 8(4): 6-9.

Tejerizo, G. T., Rogel, M. A., Ormeno-Orrillo, E., AlThabegoiti, M. J., Nilsson, J. F., Niehaus, K., Schluter, A., Puhler, A., Del Papa, M. F. and Lagares, A. 2016. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L). International Journal of Systematic and Evolutionary Microbiology, 66, 4451-4457.

Wekesa, C., Jalloh, A. A., Muoma, J. O., Korip, H., Omenge, K. M., Maingi, J. M., Furch, A. C. U. and Oelmuller, R. 2022. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. International Journal of Molecular Sciences, 23, 6599.

Xu, L., Zhang, Y., Wang, L., Chen, WM., Wei, GH. 2014. Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol 37:457–465.

Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H and Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol., 67(5):1613-1617.

Published

2023-08-30

How to Cite

Sara Sherzad Ali, Hikmat Mustafa Masyab, & Ayad H.Hasan. (2023). Bacterial Population of Alfalfa (Medicago sativa L.) Plant Nodules in Koya city: no subtitle. Zanco Journal of Pure and Applied Sciences, 35(4), 238–246. https://doi.org/10.21271/ZJPAS.35.4.23

Issue

Section

Biology, Chemistry and Medical Researches