Response of Some Bread Wheat Genotypes (Triticum aestivum L.) to Salinity at Early Growth Stage

Authors

  • Maqsuda Q. Muhammad Department of Biology, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq
  • Mohammed Q. Khursheed Department of Biology, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq
  • Sirwa A. Qadir Department of Forestry, College of Agricultural engineering sciences, Salahaddin University, Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.2.18

Keywords:

wheat, salt stress, germination indices, proline, sugar, chlorophyll

Abstract

This study aimed to detect the salinity harsh influence on germination of Triticum aestivum L. seeds, seedling growth and some physiological defense mechanisms to determine the salt- tolerant genotype. The study conducted as a completely randomized design with 3 replicates for each treatment. Four bread wheat genotypes; Hawler- 2, Azady, Adana, Rabeae were subjected to two irrigation patterns; tape water (control) and 100 mM NaCl (salt stress). The highest percent of germination; 46.77 recorded by Rabeaa genotype. Meanwhile Azady and Rabeaa had highest mean germination time (MGT); 16.71 and 16.03 respectively. Longest root was exhibited by Adena;10.50 cm. while longest shoot represented by Hawler-2; 16.40 cm. Highest dry weight of root was 1.01 g. Root: shoot ratio; 1.63 exhibited by Rabeaa. Hawler- 2 showed minimum chlorophyll a; 0.90 mg/ g. Lowest chlorophyll b and total content observed in Adena; 2.18 and 2.3 mg g-1 respectively. Azady and Rabeaa recorded higher MSI%; 43.3 and 43 % respectively as compared to others. Rabeaa recorded highest water content, proline and sugar content; 22.7, 0.31 and 11.56 mg g-1. Therefore, it could suggest that Rabea and Azady can be successfully grown under 100 mM NaCl saline condition.

 

References

AFLAKI, F., SEDGHI, M., PAZUKI, A., & PESSARAKLI, M. 2017. Investigation of seed germination indices for early selection of salinity tolerant genotypes: A case study in wheat. Emirates Journal of Food and Agriculture, 29(3), 222-226. https. //doi.10.9755/ejfa.2016-12-1940

ALLAKHVERDIEV, S. I., SAKAMOTO, A., NISHIYAMA, Y., INABA, M., & MURATA, N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant physiology, 123 (3), 1047-1056. https://dx.doi.org/10.1104%2Fpp.123.3.1047

ATLASSI PAK, V., & BAHMANI, O. 2019. Comparisons of chlorophyll content in bread wheat (Triticum aestivum L.) cultivars with contrasting of shoot sodium concentration under salinity stress. Environmental Stresses in Crop Sciences, 12(2), 579-588. https://escs.birjand.ac.ir/article_977.html?lang=en

BAĞCI, S. A., Ekiz, H., & YILMAZ, A. 2003. Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry, 27(5), 253-260. https://dergipark.org.tr/tr/download/article-file/120019. https://www.semanticscholar.org/paper/Determination-of-the-Salt-Tolerance-of-Some-Barley-Ba%C4%9Fci/4f8a91a072365c260cfd43a4e9d9867a6c404790

BATES, L. S., WALDREN, R. P., & TEARE, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207. https://link.springer.com/article/10.1007/BF00018060

DKHIL, B. B., & DENDEN, M. 2010. Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L.) Moench seeds. African Journal of Agricultural Research, 5(12), 1412-1418.https://academicjournals.org/journal/AJAR/article-abstract/CF0AAA635989

DUBOIS, M.K., CRILLES, K.A., HAMILTOR, J.K., REBERS, D.A., AND SMITH, F. 1956. Colorimetric method for determination of sugars and substance. Analytical Chemistry, 28, 350-365. https://doi.org/10.1021/ac60111a017

EL-HENDAWY, S., ELSHAFEI, A., AL-SUHAIBANI, N., ALOTABI, M., HASSAN, W., DEWIR, Y. H., & ABDELLA, K. 2019. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. Journal of Plant Interactions, 14(1), 151-163. https://www.tandfonline.com/doi/full/10.1080/17429145.2019.1603406

EL-HENDAWY, S. E., HU, Y., & SCHMIDHALTER, U. 2005. Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Australian Journal of Agricultural Research, 56(2), 123-134. https://www.publish.csiro.au/cp/ar04019

FATIH, Ö. N. E. R., & KIRLI, A. 2018. Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi, 7(2), 191-196. http://dx.doi.org/10.29278/azd.476365

Fellahi, Z. E. A., ZAGHDOUDI, H., BENSAADI, H., BOUTALBI, W., & HANNACHI, A. 2019. Assessment of salt stress effect on wheat (Triticum aestivum L.) cultivars at seedling stage. Agriculturae Conspectus Scientificus, 84(4), 347-355. https://hrcak.srce.hr/228923

GHARSALLAH, C., FAKHFAKH, H., GRUBB, D., & GORSANE, F. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, 8. https://pubmed.ncbi.nlm.nih.gov/27543452/

GUPTA, B., & HUANG, B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, vol. 2014, 1- 18 http://dx.doi.org/10.1155/2014/701596

HOFMANN, R. W., CAMPBELL, B. D., BLOOR, S. J., SWINNY, E. E., MARKHAM, K. R., RYAN, K. G., & FOUNTAIN, D. W. 2003. Responses to UV‐B radiation in Trifolium repens L.–physiological links to plant productivity and water availability. Plant, Cell and Environment, 26(4), 603-612. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00996.x

HORII, A., MCCUE, P. & SHETTY, K., 2007. Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresource technology, 98(11), 2170-2177. https://doi.org/10.1016/j.biortech.2006.08.030

HUA-LONG, L., HAN-JING, S., JING-GUO, W., YANG, L., DE-TANG, Z., & HONG-WEI, Z. 2014. Effect of seed soaking with exogenous proline on seed germination of rice under salt stress. Journal of Northeast Agricultural University (English Edition), 21(3), 1-6.https://eurekamag.com/research/064/471/064471853.php

INTERNATIONAL SEED TESTING ASSOCIATION. 1999. International rules for seed testing. Rules 1999 (No. Suppl). https://www.cabdirect.org/cabdirect/abstract/19990307875

JACOBS, A., FORD, K., KRETSCHMER, J., & TESTER, M. 2011. Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotechnology Journal, 9(8), 838-847. https://doi.org/10.1111/j.1467-7652.2011.00594.x

https://scholar.google.com/scholar?output=instlinkandq=info:ERu1IKBo1iEJ:scholar.google.com/andhl=enandas_sdt=0,5andscillfp=1671261682239746273andoi=lle

KATERJI, N., VAN HOORN, J. W., HAMDY, A., MASTRORILLI, M., NACHIT, M. M., & OWEIS, T. 2005. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties: II. Durum wheat. Agricultural Water Management, 72(3), 195-207. https://hdl.handle.net/20.500.11766/7757

KUMAR, A. S. H. W. A. N. I., SHARMA, S. K., LATA, C., DEVI, R., KULSHRESTHA, N., KRISHNAMURTHY, S. L., ... & YADAV, R. K. 2018. Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian J. Agric. Sci, 88, 1624-1632.

https://www.cabdirect.org/cabdirect/abstract/20193435604

KUMAR, S., BEENA, A. S., AWANA, M., & SINGH, A. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Frontiers in Plant Science, 8, 1151.

https://www.frontiersin.org/articles/10.3389/fpls.2017.01151/full

LATA, C., KUMAR, A., SHARMA, S. K., SINGH, J., SHEOKAND, S., MANN, A., & RANI, B. 2017. Tolerance to combined boron and salt stress in wheat varieties: Biochemical and Molecular Analyses, 28(4), 2510–2517.https://dx.doi.org/10.1016%2Fj.sjbs.2021.01.052

LIU, L., XIA, W., LI, H., ZENG, H., WEI, B., HAN, S., & YIN, C. 2018. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 9, 275.

https://doi.org/10.3389/fpls.2018.00275

MAFAKHERI, A., SIOSEMARDEH, A.F., BAHRAMNEJAD, B., STRUIK, P.C. & SOHRABI, Y., 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian journal of crop science, 4(8), pp.580-585. https://search.informit.org/doi/epdf/10.3316/informit.857341254680658

MANSOUR, M. M. F. 2013. Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum, 57(1), 1-10. https://link.springer.com/article/10.1007/s10535-012-0144-9

NIZAM, I. 2011. Effects of salinity stress on water uptake, germination and early seedling growth of perennial ryegrass. African Journal of Biotechnology, 10(51), 10418-10424. https://doi.org/10.5897/AJB11.1243

OYIGA, B.C., 2017. Genetic variation of traits related to salt stress response in Wheat (Triticum aestivum L.) (Doctoral dissertation, Universitäts-und Landesbibliothek Bonn). https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7003

PANHWAR, N. A., BURIRO, S. A., MEMON, A. H., PANHWAR, S. A., & LAHORI, A. H. 2021. Influence of salinity on germination and early seedling of five wheat (Triticum aestivum L) genotypes. Pure and Applied Biology, 10(4), 956-961.

http://dx.doi.org/10.19045/bspab.2021.100099

QADIR, S. A. 2018. Wheat Grains Germination and Seedling Growth Performance under Drought Condition. Basrah Journal of Agricultural Sciences, 31(2), 44-52.

https://scholar.google.com/citations?view_op=view_citationandhl=enanduser=_c7a-BcAAAAJandalert_preview_top_rm=2andauthuser=2andcitation_for_view=_c7a-BcAAAAJ:d1gkVwhDpl0C

QADIR, S. A., SABR, H.A, YUNIS, A. M. 2022. Growth Performance of Populus nigra under Drought and Sewage Water Irrigation. Basrah Journal of Agricultural Sciences, 35(1), in press.

QADIR, S. A., KHURSHEED, M. Q., RASHID, T. S., & AWLA, H. K. 2019. Abscisic acid accumulation and physiological indices in responses to drought stress in wheat genotypes. The Iraqi Journal of Agricultural Science, 50(2), 705-712.https://doi.org/10.36103/ijas.v2i50.670 https://scholar.google.com/citations?view_op=view_citationandhl=enanduser=_c7a-BcAAAAJandalert_preview_top_rm=2andauthuser=2andcitation_for_view=_c7a-BcAAAAJ:eQOLeE2rZwMC

RAO, S., MISHRA, B., GUPTA, S. R., & RATHORE, A. 2013. Physiological response to salinity and alkalinity of rice genotypes of varying salt tolerance grown in field lysimeters. Journal of Stress Physiology and Biochemistry, 9(1).

http://www.jspb.ru/issues/2013/N1/JSPB_2013_1_54-65.pdf

SADEGHI, H., KHAZAEI, F., YARI, L., & SHEIDAEI, S. 2011. Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN Journal of Agricultural and Biological Science, 6(1), 39-43.

https://www.semanticscholar.org/paper/EFFECT-OF-SEED-OSMOPRIMING-ON-SEED-GERMINATION-AND-Sadeghi-Khazaei/58fe72010ac3119fa402c84d02fe22c7220be040

SADDIQ, M.S., IQBAL, S., HAFEEZ, M.B., IBRAHIM, A.M., RAZA, A., FATIMA, E.M., BALOCH, H., WOODROW, P. & CIARMIELLO, L.F., 2021. Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy, 11(6), p.1193.

https://doi.org/10.3390/agronomy11061193

SHIRAZI, M. U., ASIF, S. M., KHANZADA, B., KHAN, M. A., & MOHAMMAD, A. 2001. Growth and ion accumulation in some wheat genotypes under NaCl stress. Pakistan Journal of Biological Sciences, 4(388), e391.

https://scialert.net/abstract/?doi=pjbs.2001.388.391

SMART, R.E. & BINGHAM, G.E., 1974. Rapid estimates of relative water content. Plant physiology, 53(2), pp.258-260.

https://doi.org/10.1104/pp.53.2.258

SOUROUR, A. Y. E. D., NEILA, R. A. S. S. A. A., ZOUBEIR, C. H. A. M. E. K. H., SADDREDDINE, B. E. J. I., FEKER, K. A. R. O. U. I., THEMIR, B. O. U. Z. A. I. E. N., ... & MONGI, B. Y. 2014. Effect of salt stress (sodium chloride) on germination and seedling growth of durum wheat (Triticum durum Desf.) genotypes. International Journal of Biodiversity and Conservation, 6(4), 320-325.

https://doi.org/10.5897/IJBC2013.0668

YASSIN, M., EL SABAGH, A., MEKAWY, A. M. M., ISLAM, M. S., HOSSAIN, A., BARUTCULAR, C., & SANEOKA, H. 2019. Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Applied Ecology and Environmental Research, 17(2), 5029-5041.

http://dx.doi.org/10.15666/aeer/1702_50295041.

ZHANG, L., MA, H., CHEN, T., PEN, J., YU, S., & ZHAO, X. 2014. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 9(11), e112807. https://doi.org/10.1371/journal.pone.0112807

ZHANG, N., ZHANG, H. J., SUN, Q. Q., CAO, Y. Y., LI, X., ZHAO, B., & GUO, Y. D. 2017. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Scientific Reports, 7(1), 1-15. https://pubmed.ncbi.nlm.nih.gov/28356562/

Published

2023-04-20

How to Cite

Maqsuda Q. Muhammad, Mohammed Q. Khursheed, & Sirwa A. Qadir. (2023). Response of Some Bread Wheat Genotypes (Triticum aestivum L.) to Salinity at Early Growth Stage. Zanco Journal of Pure and Applied Sciences, 35(2), 173–180. https://doi.org/10.21271/ZJPAS.35.2.18

Issue

Section

Biology, Chemistry and Medical Researches