Radiation Performance of Different Triangular Microstrip Patch Antenna Configuration Shapes Operating at 28 GHz


  • Bushra Adnan Rahman 1Department of Physics, College of Education, Salahaddin University, Kurdistan Region, Iraq.
  • Sattar Othman Hasan Department of Physics, College of Education, Salahaddin University, Kurdistan Region, Iraq.




triangular Microstrip Antenna,5G, Gain, wireless communication system, directivity


The radiation performance of different triangular microstrip patch antenna (TMPA) shapes such as right triangle (RTMPA), isosceles triangle (ITMPA), obtuse triangle (OTMPA), and equilateral triangle (ETMPA) operating at (28 GHz) are computed and compared using inset-fed techniques and Rogers-RT5880 substrate material of permittivity  and (h=0.15 mm) height. The directivity, gain, efficiency, bandwidth, VSWR, S11 and 2D-radiation pattern for each mentioned triangular patch shapes are computed utilizing CST and HFSS method. The computed results reveal generally that the ETMPA provide better radiation performance whereas the OTMPA displays lower antenna radiation parameter values compared to the other considered ones. In addition, the antenna parameters of ETMPA with the use of coaxial probe fed are also simulated and the results are compared to those previously achieved experimentally and theoretically by other researchers. Generally, a good agreement between mentioned antenna parameter results is displayed and reliability of those achieved by CST with inset fed techniques is clearly observed. Moreover, the overall antenna parameter obtained, respectively, with CST and HFSS techniques for inset fed ETMPA are S11 (-28.68, -20.64), VSWR (1.076,1.20), gain (5.82, 6.29) dB, directivity (6.85, 7.09) dB, bandwidth (0.452, 0.369) GHz, efficiency (78.9%, 83.2%) and with a small antenna size of about (3.88 mm3) which is most reliable for 5G technology application systems.


AFANDI, R. & HADI, D. R. Design and Bandwidth Optimization on Triangle Patch Microstrip Antenna for WLAN 2.4 GHz. MATEC Web of Conferences, 2018, EDP Sciences, 01042: http://dx.doi.org /10.1051/matecconf/201816401042

ALTUFAILI, M. M. S., NAJAF, A. N. & IDAN, Z. S. 2022, Design of circular-shaped microstrip patch antenna for 5G applications. TELKOMNIKA (Telecommunication Computing Electronics and Control), 20, 19-26: http://dx.doi.org/10.12928 /TELKOMNIKA.v20i1.21019.

BUSHRA A. R. & SATTAR O. H., Simulation Design of Low-Profile Equilateral Triangle Microstrip Patch Antenna Operating at 28 GH, International Journal on Communications Antenna and Propagation (IRECAP), Vol. 12, N. 2, April 2022, https://doi.org/10.15866/ irecap.v12i2.21964.

DARBOE, O., KONDITI, D. B. O. & MANENE, F. 2019, A 28 GHz rectangular microstrip patch antenna for 5G applications. International Journal of Engineering Research and Technology, 12, 854-857: https:// www.researchgate.net/publication/334170529.

DARSONO, M. & WIJAYA, A. Design and simulation of a rectangular patch microstrip antenna for the frequency of 28 GHz in 5G technology. Journal of Physics: Conference Series, 2020. IOP Publishing, 012107: http://dx.doi.org/10.1088/17426596/1469/ 1 /012107.

EZZULDDIN, S. K., HASAN, S. O. & AMEEN, M. M. 2021, Optimization of Rectangular Microstrip Antenna Substrate Parameters to Operate with High radiation Performances for 5G applications. Advances in Mechanics, 9, 273-286: https://www .researchgate.net/publication/357859141

EZZULDDIN, S. K., HASAN, S. O. & AMEEN, M. M. 2022, Microstrip patch antenna design, simulation and fabrication for 5G applications. Simulation Modelling Practice and Theory, 116, 102497: http://dx.doi.org/10.1016/j.simpat.2022.102497.

EZZULDDIN, S. K., HASAN, S. O. & AMEEN, M. M. Optimization of rectangular microstrip antenna patch parameters to operate with high radiation performances for 5G applications. AIP Conference Proceedings, 2022, AIP Publishing LLC, 070002 https://doi.org/10.1063/5.0066800.

GEMEDA, M. T., FANTE, K. A., GOSHU, H. L. & GOSHU, A. L. 2021, Design and Analysis of a 28 GHz Microstrip Patch Antenna for 5G Communication Systems. International Research Journal of Engineering and Technology (IRJET), 8, 881-88: https://www.researchgate.net/publication/349461706.

GHARBI, I., BARRAK, R., MENIF, M. & RAGAD, H. Design of patch array antennas for future 5G applications. 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2017, IEEE, 674-678: http://dx.doi.org/10.1109/ STA.2017.8314954.

H PATEL, D. & D MAKWANA, G. 2021, A Comprehensive Review on Multi-band Microstrip Patch Antenna Comprising 5G Wireless Communication. International Journal of Computing and Digital System: https://dx.doi.org/10.12785/ijcds/110177.

HANEEF, S. R., SELVAPERUMAL, S. K. & JAYAPAL, V. 2019, High Gain Rectangular Single Patch Antenna at Mmwave Band: http://dx.doi.org/10.13140 /RG.2.2.28455.70564.

JOHARI, S., JALIL, M. A., IBRAHIM, S. I., MOHAMMAD, M. N. & HASSAN, N. 2018, 28 GHz microstrip patch antennas for future 5G. Journal of Engineering and Science Research, 2: https://doi.org/10.26666/ rmp.jesr.2018.4.1.

JOSHI, M. P. & GOND, V. J. Microstrip patch antennas for wireless communication: A review. 2017 International Conference on Trends in Electronics and Informatics (ICEI), 2017. IEEE, 96-99: http://doi.org/10.5281/zenodo.2648966.

KOMPELLA, S. K. & ABDUL RAJAK, A. 2022, Design and Study the Performance of Micro-Strip Patch Antennae for 5G Mobile Communication. ICT Systems and Sustainability. Springer: http:// dx.doi.org/10.1007/978-981-16-5987-4_2.

KUMAR, S. & KUMAR, A. Design of circular patch antennas for 5G applications. 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), 2019, IEEE, 287-289:

MAITY, S. & GUPTA, B. 2014. Simplified analysis for 30°–60°–90° triangular microstrip antenna. Journal of Electromagnetic Waves and Applications, 28, 91-101: http://dx.doi.org/10.1080/09205071.2013 .857279.

MAITY, S. & GUPTA, B. 2015, Cavity model analysis of 30°–60°–90° triangular microstrip antenna. AEU-International Journal of Electronics and Communications, 69, 923-932: http://dx.doi.org /10.1016/j.aeue.2015.02.012.

MAITY, S. & GUPTA, B. 2018, Radiation Characteristics of an Isosceles 45–45–90 Triangular Microstrip Antenna. IETE Journal of Research, 64, 139-148: http://dx.doi.org/10.1080/03772063.2017.1341820.

MEHTA, A. 2015, Microstrip antenna. International Journal of Scientific & Technology Research, 4, 54-57: www.ijstr.org

MOHAMMED, A. S., KAMAL, S., AIN, M. F., AHMAD, Z. A., ULLAH, U., OTHMAN, M., HUSSIN, R. & AB RAHMAN, M. F. 2019, A review of microstrip patch antenna design at 28 GHz for 5G applications system. International Journal of Scientific & Technology Research, 8: https://www.researchgate .net/publication/336922387.

MOKAL, M. V., GAGARE, P. S. & LABADE, D. R. 2017, Analysis of Micro strip patch Antenna Using Coaxial feed and Micro strip line feed for Wireless Application. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN, 2278-2834: http://dx.doi.org/10.9790/2834-1203033641.

NASEEB, C. 2020, 5G — Fifth Generation of Mobile Networks. ILLUMINATION: https://medium.com /illumination/5g-fifth-generation-of-mobile-networks-part-1-f32d7f003686.

OLAIMAT, M. 2010, Design and analysis of triangular microstrip patch antennas for wireless communication systems. Master Thesis, Jordan University of Science and Technology: http://dx.doi.org/10.13140/RG.2.2.34602.34248.

OLAIMAT, M. M. & DIB, N. I. 2011. A study of 15°-75°-90° angles triangular patch antenna. Progress In Electromagnetics Research Letters, 21, 1-9: https://www.researchgate.net/publication/328102556.

STUTZMAN, W. L. & THIELE, G. A. 2012, Antenna theory and design, John Wiley & Sons.

SURENDRAN, A., SUBRAMANIAM, L., SELVAPERUMAL, S. K. & JAYAPAL, V. 2019, High gain compact multi-band microstrip patch antenna for 5G network. International Journal of Advanced Science and Technology, 29, 1390-1410: https://www.researchgate.net/publication/339487905.

TODOSIOSKA, A. 2020, The role of telecommunication companies in Internet of things: https://run.unl.pt/ bitstream/10362/94883/1 /TGI0283.pdf.

UDOFIA, K. M. & SATURDAY, J. C. 2019, Parametric comparison of circular, triangular and rectangular dual-band microstrip antennas for wireless communication. European Journal of Engineering and Technology Vol. 7: http://www.idpublications .org/wp-content/uploads/2019/03/Full-Paper-PARAMETRIC-COMPARISON-OF-CIRCULAR-TRIANGULAR-AND-RECTANGULAR-DUAL-BAND-MICROSTRIP-ANTENNAS.pdf.

VORA, L. J. 2015, Evolution of mobile generation technology: 1G to 5G and review of upcoming wireless technology 5G. International journal of modern trends in engineering and research, 2, 281-290:https://ijmter.com/papers/volume-2/issue-10/evolution-of-mobile-generation technology-1g-to-5g-and-review-of-5g.pdf.





Mathematics ,Physics and Engineering Researches