Bacterial Co-Infections and Antibiotic Resistance in Urinary Tract Infection of Covid-19 Patients in Erbil City

Authors

  • Wissam Albeer Nooh Department of Biology, College of Education, Salahaddin University-Erbil, Erbil ,Kurdistan Region, Iraq
  • Khadija Khalil Mustafa Department of Biology, College of Education, Salahaddin University-Erbil, Erbil ,Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.36.5.1

Keywords:

Urinary tract infection, Co-infection Antibiotic sensitivity Covid-19 ESBLs gene

Abstract

The COVID-19 pandemic has raised concerns over secondary infections because it has limited treatment options and empiric antimicrobial treatment poses serious risks of aggravating antimicrobial resistance. Many studies have shown that COVID-19 patients are predisposed to developing secondary infections. The prevalence of urinary tract infections (UTI) was evaluated in 248 patients admitted to different hospitals in Erbil city, Iraq. Results showed 138 (55.65%) patients were positive for bacterial growth, of which 72 isolates of Gram-negative and 66 isolates of Gram-positive bacteria were isolated and identified from the urine of COVID-19 patients depending on the 16S rRNA gene using PCR. The predominant obtained bacteria were Staphylococci species, of which isolates belong to 6 species, and the predominant Gram-negative species was Pseudomonas spp. which belongs to 4 species. Also, their susceptibility to 15 antibiotics was tested and it was found that most of the Gram-negative isolates were highly resistant to ampicillin 66(91.66%), amoxicillin 60(83.33%), cephalexin 52(72.22%) and cefixime 50(69.44%). While the most effective antibiotic was imipenem, and with percentage of 26(36.11%), it also showed variable sensitivity to other antibiotics. For Gram-positive bacteria, the highest resistance was against cefixime 40(60.60%), ampicillin 28(42.42%), and 18(27.27%) for both amoxicillin and ciprofloxacin, while the most effective antibiotic was gentamicin, which showed effectiveness against all the Gram-positive isolates. Another part of the study concerned with detection of the existence of ESBLs genes responsible for antibiotic resistance. The results revealed that all the isolates possessed the 16S rRNA gene, whereas blaTEM and blaCTX-M were found to be the most possessed genes in all the isolates, with a percentage of (88.33%).

 

References

AKPAKA, P. E., VAILLANT, A., WILSON, C. & JAYARATNE, P. 2021. Extended Spectrum Beta-Lactamase (ESBL) Produced by Gram-Negative Bacteria in Trinidad and Tobago. International Journal of Microbiology, 2021, 5582755.

AL-NAQSHBANDI, A. A., CHAWSHEEN, M. A. & ABDULQADER, H. H. 2019. Prevalence and antimicrobial susceptibility of bacterial pathogens isolated from urine specimens received in rizgary hospital—Erbil. Journal of infection and public health, 12, 330-336.

ALHAZZANI, W., MØLLER, M. H., ARABI, Y. M., LOEB, M., GONG, M. N., FAN, E., OCZKOWSKI, S., LEVY, M. M., DERDE, L. & DZIERBA, A. 2020. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive care medicine, 46, 854-887.

ALI, S. A., MANDAL, S., GEORGALAS, A. & GILANI, S. A. D. 2021. A Pattern of Antibiotic Resistance in Gram-Negative Rods Causing Urinary Tract Infection in Adults. Cureus, 13.

ALIZADEH, M., YOUSEFI, L., PAKDEL, F., GHOTASLOU, R., REZAEE, M. A., KHODADADI, E., OSKOUEI, M. A., SOROUSH BARHAGHI, M. H. & KAFIL, H. S. 2021. MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Advances in Pharmacological and Pharmaceutical Sciences, 2021.

ATLAS, R. M., PARKS, L. C. & BROWN, A. 1995. Laboratory manual of experimental microbiology. Mosby-Year Book. Inc., USA.

BARDI, T., PINTADO, V., GOMEZ-ROJO, M., ESCUDERO-SANCHEZ, R., AZZAM LOPEZ, A., DIEZ-REMESAL, Y., MARTINEZ CASTRO, N., RUIZ-GARBAJOSA, P. & PESTAÑA, D. 2021. Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome. European Journal of Clinical Microbiology & Infectious Diseases, 40, 495-502.

BERIM, G. O. & RUCKENSTEIN, E. 2016. Calculation of nanodrop profile from fluid density distribution. Advances in Colloid and Interface Science, 231, 15-22.

BOYD, D. A., TYLER, S., CHRISTIANSON, S., MCGEER, A., MULLER, M. P., WILLEY, B. M., BRYCE, E., GARDAM, M., NORDMANN, P. & MULVEY, M. R. 2004. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrobial Agents and Chemotherapy, 48, 3758-3764.

CASTANHEIRA, M., SIMNER, P. J. & BRADFORD, P. A. 2021. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3.

CHEN, J., TOMASEK, M., NUÑEZ, E. & GAU, V. 2021. Method for concentrating viable microorganisms for microbial load determination and eliminating uncertainty from matrix effects from urine and whole blood. MethodsX, 8, 101451.

CLANCY, C. J. & NGUYEN, M. H. 2020. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect? Clinical Infectious Diseases, 71, 2736-2743.

CLINICAL & INSTITUTE, L. S. 2017. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute Wayne, PA.

CONTROL, C. F. D. & PREVENTION 2020. Evidence used to update the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19. US Dept Health Hum Serv, 2019, 1-6.

COX, M. J., LOMAN, N., BOGAERT, D. & O'GRADY, J. 2020. Co-infections: potentially lethal and unexplored in COVID-19. The Lancet Microbe, 1, e11.

CRETA, M., SAGNELLI, C., CELENTANO, G., NAPOLITANO, L., LA ROCCA, R., CAPECE, M., CALIFANO, G., CALOGERO, A., SICA, A. & MANGIAPIA, F. 2021. SARS‐CoV‐2 infection affects the lower urinary tract and male genital system: A systematic review. Journal of Medical Virology, 93, 3133-3142.

DAS, S., KONAR, J., BANERJEE, A. & TALUKDAR, M. 2022. Prevalence of Urinary Tract Infection among Hospitalized Covid 19 Patients: A Study in Eastern India. The Journal of the Association of Physicians of India, 70, 11-12.

ELHARIRI, M., HAMZA, D., ELHELW, R. & DORGHAM, S. M. 2017. Extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa in camel in Egypt: potential human hazard. Annals of clinical microbiology and antimicrobials, 16, 1-6.

FENTA, A., DAGNEW, M., ESHETIE, S. & BELACHEW, T. 2020. Bacterial profile, antibiotic susceptibility pattern and associated risk factors of urinary tract infection among clinically suspected children attending at Felege-Hiwot comprehensive and specialized hospital, Northwest Ethiopia. A prospective study. BMC infectious diseases, 20, 1-10.

FOLLIERO, V., CAPUTO, P., DELLA ROCCA, M. T., CHIANESE, A., GALDIERO, M., IOVENE, M. R., HAY, C., FRANCI, G. & GALDIERO, M. 2020. Prevalence and antimicrobial susceptibility patterns of bacterial pathogens in urinary tract infections in University Hospital of Campania “Luigi Vanvitelli” between 2017 and 2018. Antibiotics, 9, 215.

GARCIA-VIDAL, C., SANJUAN, G., MORENO-GARCÍA, E., PUERTA-ALCALDE, P., GARCIA-POUTON, N., CHUMBITA, M., FERNANDEZ-PITTOL, M., PITART, C., INCIARTE, A. & BODRO, M. 2021. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27, 83-88.

GONG, J., OU, J., QIU, X., JIE, Y., CHEN, Y., YUAN, L., CAO, J., TAN, M., XU, W. & ZHENG, F. 2020. A tool for early prediction of severe coronavirus disease 2019 (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China. Clinical infectious diseases, 71, 833-840.

GUDIOL, C., DURÀ-MIRALLES, X., AGUILAR-COMPANY, J., HERNÁNDEZ-JIMÉNEZ, P., MARTÍNEZ-CUTILLAS, M., FERNANDEZ-AVILÉS, F., MACHADO, M., VÁZQUEZ, L., MARTÍN-DÁVILA, P. & DE CASTRO, N. 2021. Co-infections and superinfections complicating COVID-19 in cancer patients: a multicentre, international study. Journal of Infection, 83, 306-313.

HALL, G. S. 2013. Bailey & Scott’s Diagnostic microbiology, 13th edn. American Society for Clinical Pathology.

HERMANS, S. M., BUCKLEY, H. L., CASE, B. S., CURRAN-COURNANE, F., TAYLOR, M. & LEAR, G. 2017. Bacteria as emerging indicators of soil condition. Applied and environmental microbiology, 83, e02826-16.

HEUER, H., KRSEK, M., BAKER, P., SMALLA, K. & WELLINGTON, E. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and environmental microbiology, 63, 3233-3241.

HUGHES, S., TROISE, O., DONALDSON, H., MUGHAL, N. & MOORE, L. 2020. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26, 1395-1399.

HUTTNER, B., CATHO, G., PANO-PARDO, J., PULCINI, C. & SCHOUTEN, J. 2020. COVID-19: don't neglect antimicrobial stewardship principles! Clinical Microbiology and Infection, 26, 808.

KARRULI, A., BOCCIA, F., GAGLIARDI, M., PATAUNER, F., URSI, M. P., SOMMESE, P., DE ROSA, R., MURINO, P., RUOCCO, G. & CORCIONE, A. 2021. Multidrug-resistant infections and outcome of critically ill patients with coronavirus disease 2019: a single center experience. Microbial Drug Resistance, 27, 1167-1175.

KIRCHMAN, D. L., COTTRELL, M. T. & LOVEJOY, C. 2010. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environmental microbiology, 12, 1132-1143.

KRISHNAMURTHY, V., VIJAYKUMAR, G., KUMAR, S., PRASHANTH, H., PRAKASH, R. & NAGARAJ, E. 2013. Phenotypic and genotypic methods for detection of extended spectrum β lactamase producing Escherichia coli and Klebsiella pneumoniae isolated from ventilator associated pneumonia. Journal of clinical and diagnostic research: JCDR, 7, 1975.

LEONARD, J., GRACE, M., BUZARD, G., MULLEN, M. & BARBAGALLO, C. 1998. Preparation of PCR products for DNA sequencing. Biotechniques, 24, 314-317.

NEBREDA-MAYORAL, T., MIGUEL-GÓMEZ, M. A., MARCH-ROSSELLÓ, G. A., PUENTE-FUERTES, L., CANTÓN-BENITO, E., MARTÍNEZ-GARCÍA, A. M., MUÑOZ-MARTÍN, A. B. & ORDUÑA-DOMINGO, A. 2022. Bacterial/fungal infection in hospitalized patients with COVID-19 in a tertiary hospital in the Community of Castilla y León, Spain. Enfermedades infecciosas y microbiologia clinica (English ed.).

O’BRIEN, V. P., HANNAN, T. J., NIELSEN, H. V. & HULTGREN, S. J. 2016. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiology spectrum, 4, 4.1. 07.

ONWUBIKO, N. E. & SADIQ, N. M. 2011. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan African Medical Journal, 8.

PARASHAR, S. 2014. Staphylococcus Haemolyticus; A nosocomial pathogen showing higher antimicrobial resistance. Medical Science, 3.

PATERSON, D. L., HUJER, K. M., HUJER, A. M., YEISER, B., BONOMO, M. D., RICE, L. B. & BONOMO, R. A. 2003. the International Klebsiella Study Group: Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV-and CTX-M-type β-lactamases. Antimicrob Agents Chemother, 47, 3554-3560.

PISHTIWAN, A. H. & KHADIJA, K. M. 2019. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterranean journal of hematology and infectious diseases, 11.

PRAKASH, D. & SAXENA, R. S. 2013. Distribution and antimicrobial susceptibility pattern of bacterial pathogens causing urinary tract infection in urban community of meerut city, India. International scholarly research notices, 2013.

RANI, S., RAO, K., RAVINDER, S. & KANAKADURGA, P. 2016. Prevalence of extended spectrum beta lactamases (ESBL) producing Pseudomonas aeruginosa isolates from burn patients. Proceedings of the International Journal of Contemporary Medical Research, 5, 1297-1300.

RAWAT, D. & NAIR, D. 2010. Extended-spectrum β-lactamases in Gram Negative Bacteria. Journal of global infectious diseases, 2, 263.

RICHMAN, D. D., WHITLEY, R. J. & HAYDEN, F. G. 2020. Clinical virology, John Wiley & Sons.

ROLSTON, K. V., JAMAL, M. A., NESHER, L., SHELBURNE, S. A., RAAD, I. & PRINCE, R. A. 2017. In vitro activity of ceftaroline and comparator agents against Gram-positive and Gram-negative clinical isolates from cancer patients. International journal of antimicrobial agents, 49, 416-421.

ROSSIGNOL, L., VAUX, S., MAUGAT, S., BLAKE, A., BARLIER, R., HEYM, B., LE STRAT, Y., BLANCHON, T., HANSLIK, T. & COIGNARD, B. 2017. Incidence of urinary tract infections and antibiotic resistance in the outpatient setting: a cross-sectional study. Infection, 45, 33-40.

SALATA, C., CALISTRI, A., PAROLIN, C. & PALÙ, G. 2020. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathogens and Disease, 77.

SANJEE, S., KARIM, M., AKTER, T., PARVEZ, M., HOSSAIN, M., JANNAT, B. & PERVIN, S. 2017. Prevalence and antibiogram of bacterial uropathogens of urinary tract infections from a tertiary care hospital of Bangladesh. Journal of scientific research, 9, 317-328.

SHARIFIPOUR, E., SHAMS, S., ESMKHANI, M., KHODADADI, J., FOTOUHI-ARDAKANI, R., KOOHPAEI, A., DOOSTI, Z. & EJ GOLZARI, S. 2020. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC infectious diseases, 20, 1-7.

SHOAIB, M., MUZAMMIL, I., HAMMAD, M., BHUTTA, Z. A. & YASEEN, I. 2020. A mini-review on commonly used biochemical tests for identification of bacteria. A Mini-Review on Commonly used Biochemical Tests for Identification of Bacteria, 54, 8-8.

SORIANO, M. C., VAQUERO, C., ORTIZ-FERNÁNDEZ, A., CABALLERO, A., BLANDINO-ORTIZ, A. & DE PABLO, R. 2021. Low incidence of co-infection, but high incidence of ICU-acquired infections in critically ill patients with COVID-19. Journal of Infection, 82, e20-e21.

URMI, U. L., JAHAN, N., NAHAR, S., RANA, M., SULTANA, F., HOSSAIN, B., IQBAL, S., HOSSAIN, M., MOSADDEK, A. S. M. & ISLAM, S. 2019. Gram-positive uropathogens: empirical treatment and emerging antimicrobial resistance. Biomed Res, 4, 1-4.

VAUGHN, V. M., GANDHI, T. N., PETTY, L. A., PATEL, P. K., PRESCOTT, H. C., MALANI, A. N., RATZ, D., MCLAUGHLIN, E., CHOPRA, V. & FLANDERS, S. A. 2021. Empiric antibacterial therapy and community-onset bacterial coinfection in patients hospitalized with coronavirus disease 2019 (COVID-19): a multi-hospital cohort study. Clinical Infectious Diseases, 72, e533-e541.

WALI, M. R., ALI, W. M. & KHALAF, M. A. 2021. Bacterial Co-infection among hospitalized patients with COVID-19 in Kirkuk city-Iraq. Annals of the Romanian Society for Cell Biology, 25, 16575-16584.

ZHANG, X., SUN, Z. & YANG, Q. 2018. Application of Denaturing gradient gel electrophoresis to the analysis of bacterial communities associated with asymptomatic and symptomatic pericoronitis. Journal of Oral and Maxillofacial Surgery, 76, 483-489.

Published

2024-10-31

How to Cite

Wissam Albeer Nooh, & Khadija Khalil Mustafa. (2024). Bacterial Co-Infections and Antibiotic Resistance in Urinary Tract Infection of Covid-19 Patients in Erbil City. Zanco Journal of Pure and Applied Sciences, 36(5), 1–11. https://doi.org/10.21271/ZJPAS.36.5.1

Issue

Section

Biology, Chemistry and Medical Researches