Bioremediation of Heavy Metals by using Aspergillus niger and Candida albicans

Authors

  • Muzhda Qasim Qader Department of Environmental Science and Health, College of Science,Salahaddin University- Erbil, Iraq
  • Yahya Ahmed Shekha Department of Environmental Science and Health, College of Science,Salahaddin University- Erbil, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.3.16

Keywords:

Mycoremediation, Bioremediation, Aspergillus niger, Candida albicans, Heavy metals.

Abstract

Bioremediation is a branch of biotechnology that employs the use of living organisms, like microalgae and fungi, in the removal of contaminants, pollutants, and toxins from soil, water, and other environments. The study was design to know and evaluate the efficiency of fungi to remediate two types of heavy metals (Pb and Cd), by using different concentrations (5, 15, 35, and 50ppm). Results revealed that the lowest applied dose (5ppm) of both tested heavy metals had the highest reduction percent by using two fungal stains Aspergillus niger and Candida albicans were remove lead by 85.6 and 84.2%, while for cadmium were 80 and 78.4% respectively. Statistically significant differences (P≤0.05) were observed between control and the treatments for both tested heavy metals. Highest heavy metals removal was found at the end of experiment (20 days).

References

ABDULLAHI, M., MACHIDO, D. J. N. J. O. B. & SCIENCES, A. 2017. Heavy metals resistance potential of some Aspergillus spp. isolated from Tannery wastewater. 25, 120-129.

ACOSTA-RODRIGUEZ, I., CARDENAS-GONZÁLEZ, J. F., DE GUADALUPE MOCTEZUMA-ZÁRATE, M., PEREZ, A. R. & MARTÍNEZ-JUÁREZ, V. M. 2017. Hexavalent chromium (VI) removal by Aspergillus niger. Handbook of Metal-Microbe Interactions and Bioremediation. CRC Press.

ACOSTA-RODRÍGUEZ, I., CÁRDENAS-GONZÁLEZ, J. F., RODRÍGUEZ PÉREZ, A. S., OVIEDO, J. T. & MARTÍNEZ-JUÁREZ, V. M. 2018a. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorganic Chemistry Applications, 2018.

ACOSTA-RODRÍGUEZ, I., CÁRDENAS-GONZÁLEZ, J. F., RODRÍGUEZ PÉREZ, A. S., OVIEDO, J. T., MARTÍNEZ-JUÁREZ, V. M. & APPLICATIONS 2018b. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorganic Chemistry, 2018.

AL AHMED, S. G. K. 2014 Dairy wastewater treatment using microalgae in Karbala city–Iraq. Int J Env Ecol Family Urban Stud., 22.

ANAHID, S., YAGHMAEI, S. & GHOBADINEJAD, Z. 2011. Heavy metal tolerance of fungi. Scientia Iranica, 18, 502-508. .

APHA 2012. Standard methods for the examination of water and wastewater American public health association Washington, DC, American Public Health Association, American Water Works Association, Water Environment Federation. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1982598.

ARAGÃO, M. S., MENEZES, D. B., RAMOS, L. C., OLIVEIRA, H. S., BHARAGAVA, R. N., FERREIRA, L. F. R., TEIXEIRA, J. A., RUZENE, D. S. & SILVA, D. P. 2020. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere, 244, 125432.

BALDRIAN, P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microbial technology, 32, 78-91 DOI:10.1016/S0141-0229(02)00245-4.

BARROS JÚNIOR, L., MACEDO, G., DUARTE, M., SILVA, E. & LOBATO, A. 2003. Biosorption of cadmium using the fungus Aspergillus niger. Brazilian Journal of Chemical Engineering, 20, 229-239.

BELLO, O. & ABDULLAHI, I. 2016. Tolerance to heavy metals by some fungal isolates from petroleum refinery effluent in Kaduna, Nigeria. Br Microbiol Res J, 12, 1-8.

BHATTACHARYA, S. & DAS, A. 2011. Mycoremediation of Congo red dye by filamentous fungi. Brazilian Journal of Microbiology, 42, 1526-1536.

DHALIWAL, S. S., SINGH, J., TANEJA, P. K. & MANDAL, A. 2020. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science Pollution Research, 27, 1319-1333.

DÖNMEZ, G. & AKSU, Z. 2001. Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp. Water Research, 35, 1425-1434.

DYNOWSKA, M. 1997. Yeast-like fungi possessing bio-indicator properties isolated from the Łyna river. Acta Mycologica, 32, 279-286.

EROĞLU, A. E. & ŞEKER, A. 2007. Preconcentration of Heavy Metals in Environmental Samples by Biosorption and Determination by Atomic Spectrometry, Izmir Institute of Technology (Turkey).

FLETCHER, S. R. Earth Summit Summary: United Nations Conference on Environment and Development (UNCED), Brazil, 1992. 1992. Congressional Research Service, Library of Congress.

GADD, G. M. & WHITE, C. 1993. Microbial treatment of metal pollution—a working biotechnology? Trends in biotechnology, 11, 353-359.

GUPTA, R., AHUJA, P., KHAN, S., SAXENA, R. & MOHAPATRA, H. 2000. Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Current science, 967-973.

HAJDU-RAHKAMA, R. 2014. Bioremediation of heavy metals by using the microalga Desmodesmus subspicatus. bachelore, Ostfalia University of Applied Sciences.

IGWE, J. & ABIA, A. 2006. A bioseparation process for removing heavy metals from waste water using biosorbents. African journal of biotechnology, 5.

ISMAEL, B., ISMAEL, H., MALA, A. & GALALAEY, K. 2019. Phytochemical Profile and Antifungal Effect of (Quercus infectoria Oliv.) Plant Root Extract on Several Candida spices. International Journal of Scientific Engineering Research, 9.

KAPAHI, M. & SACHDEVA, S. 2017. Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour Bioprocess 4 (1): 32–41.

KHAN, I., AFTAB, M., SHAKIR, S., ALI, M., QAYYUM, S., REHMAN, M. U., HALEEM, K. S. & TOUSEEF, I. 2019. Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental monitoring assessment, 191, 1-11.

LEUNG, K. T., JIANG, Z.-H., ALMZENE, N., NANDAKUMAR, K., SREEKUMARI, K. & TREVORS, J. T. 2019. Biodegradation and bioremediation of organic pollutants in soil. Modern soil microbiology, 381-402.

LUBERTOZZI, D. & KEASLING, J. D. 2009. Developing Aspergillus as a host for heterologous expression. Biotechnology advances, 27, 53-75.

MACHIDO, D., YAKUBU, S. & EZEONUEGBU, B. 2014. Composition of fungal flora in raw refinery effluent, effluent retention pond and a treated effluent recipient river. Journal of Applied Sciences Environmental Management, 18, 592-596.

MARCELLO PAGANO , K. G. 2018. Principles of biostatistics, CRC Press, Boca Raton, FL. 584. .

MOCTEZUMA ZÁRATE, M. D. G., ROBLES GALVÁN, A., CÁRDENAS GONZÁLEZ, J. F., RODRÍGUEZ PÉREZ, A. S., NAVARRO CASTILLO, J. F., TOVAR OVIEDO, J., MARTÍNEZ JUÁREZ, V. M., CUELLO, C. M. & ACOSTA RODRÍGUEZ, I. 2017. Artículo: ISOLATION AND IDENTIFICATION OF FUNGI AND YEAST RESISTANT TO LEAD (II). Journal of Multidisciplinary Engineering Science and Technology 4.

NIES, D. H. 1999. Microbial heavy-metal resistance. Applied microbiology biotechnology, 51, 730-750.

NIES, D. H., NIES, A., CHU, L. & SILVER, S. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proceedings of the National Academy of Sciences, 86, 7351-7355.

NIES, D. H. & SILVER, S. 1995. Ion efflux systems involved in bacterial metal resistances. Journal of industrial microbiology, 14, 186-199.

OLATUNJI, B. O., CISLER, J. M. & TOLIN, D. F. 2007. Quality of life in the anxiety disorders: a meta-analytic review. Clin Psychol Rev, 27, 572-81.

QADIR, G. 2019. Yeast a magical microorganism in the wastewater treatment. Journal of pharmacognosy phytochemistry, 8, 1498-1500.

REHMAN, A. & ANJUM, M. S. 2011. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring Assessment, 174, 585-595.

REHMAN, A., ANJUM, M. S. J. E. M. & ASSESSMENT 2011. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. 174, 585-595.

ROSEN, B. P. 2002. Biochemistry of arsenic detoxification. FEBS letters, 529, 86-92.

SALA COSSICH, E., GRANHEN TAVARES, C. R. & KAKUTA RAVAGNANI, T. M. 2002. Biosorption of chromium (III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5, 6-7.

SHAZIA, I., AMARRA, A. & KOUSAR, P. 2012. Tolerance potential of fungi isolated from polluted soil of Multan, Pakistan. International Journal of Biosciences, 2, 27-34.

SIDDIQUEE, S., ROVINA, K., AZAD, S. A., NAHER, L., SURYANI, S. & CHAIKAEW, P. 2015. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. Microb Biochem Technol, 7, 384-395.

SINGH, A. & GAUBA, P. 2014. Mycoremediation: a treatment for heavy metal pollution of soil. Journal of Civil Engineering and Environmental Technology, 1, 59-61.

SINGH, M., SRIVASTAVA, P., VERMA, P., KHARWAR, R., SINGH, N. & TRIPATHI, R. 2015. Soil fungi for mycoremediation of arsenic pollution in agriculture soils. Journal of applied microbiology, 119, 1278-1290.

STEFFEN, K. T., HATAKKA, A. & HOFRICHTER, M. 2003. Degradation of benzo [a] pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Applied Environmental Microbiology, 69, 3957-3964.

TSEKOVA, K., TODOROVA, D. & GANEVA, S. 2010. Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. International Biodeterioration Biodegradation, 64, 447-451.

YANG, J., WANG, Q., LUO, Q., WANG, Q. & WU, T. 2009a. Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochemical Engineering Journal, 46, 294-299.

YANG, J., WANG, Q., LUO, Q., WANG, Q. & WU, T. J. B. E. J. 2009b. Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. 46, 294-299.

Published

2023-06-15

How to Cite

Muzhda Qasim Qader, & Yahya Ahmed Shekha. (2023). Bioremediation of Heavy Metals by using Aspergillus niger and Candida albicans. Zanco Journal of Pure and Applied Sciences, 35(3), 180–186. https://doi.org/10.21271/ZJPAS.35.3.16

Issue

Section

Agricultural and Environmental Researches