Optimization of Variable Parameters in Diode Pumped SHG Nd-YAG Lasers

Authors

  • Twana Mohammed Kak Anwer Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
  • Nahlah Mohammed Qadir Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
  • Suran Dunun Yaseen Department of Information Technology, Khabat Technical Institute, Erbil Polytechnic University, 44001 Erbil, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.2.5

Keywords:

Nd-YAG Laser, SHG using MgO: LiNbO3, Powers.

Abstract

Second Harmonic Generation (SHG) produces many parameters which are the consequences of interaction of fundamental incident power  and those created inside the second harmonic cavity, external employing monolithic crystals. In this study, a low power of  continuous wave (CW) Nd-YAG laser with principal output of  and maximum power of  theoretically was used. The crystal is [MgO: LiNbO3] which is lithium niobate, magnesium oxide doped with specific optical properties explained, the parameters in questions are both reflection  and circulating  powers in the second harmonic cavity. Both are functions of fundamental incident power . The results are compared with their experimental correspondents and interpretation for the causes is discussed.

References

ALTIERE, E. E. 2014. The adventures of Nikita and Casper: high power ultraviolet lasers for precision spectroscopy. University of British Columbia.

ASHKIN, A., BOYD, G. & DZIEDZIC, J. 1966. Resonant optical second harmonic generation and mixing. IEEE Journal of quantum electronics, 2, 109-124.

ASPELMEYER, M., KIPPENBERG, T. J. & MARQUARDT, F. 2014. Cavity optomechanics. Reviews of Modern Physics, 86, 1391.

BRIEGER, M., BÜSENER, H., HESE, A., MOERS, F. V. & RENN, A. 1981. Enhancement of single frequency SGH in a passive ring resonator. Optics Communications, 38, 423-426.

BYER, R. 1975. Parametric oscillators and nonlinear materials. Nonlinear Optics, 2.

CHAITANYA, N. A., AADHI, A., KUMAR, S. C., JABIR, M., SAMANTA, G. & EBRAHIM-ZADEH, M. 2016. Frequency-doubling of femtosecond pulses in “thick” nonlinear crystals with different temporal and spatial walk-off parameters. IEEE Photonics Journal, 8, 1-13.

CHEN, C., SASAKI, T., LI, R., WU, Y., LIN, Z., MORI, Y., HU, Z., WANG, J., AKA, G., YOSHIMURA, M. AND KANEDA, Y., 2012. Nonlinear optical borate crystals: Principals and applications. John Wiley & Sons.

DE LIMA, T. F., DORIS, E. A., BILODEAU, S., ZHANG, W., JHA, A., PENG, H.-T., BLOW, E. C., HUANG, C., TAIT, A. N. & SHASTRI, B. J. 2022. Design Automation of Photonic Resonator Weights. arXiv preprint arXiv:2203.01792.

FÜRST, J., STREKALOV, D., ELSER, D., LASSEN, M., ANDERSEN, U. L., MARQUARDT, C. & LEUCHS, G. 2010. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Physical review letters, 104, 153901.

GUO, S. & WANG, J. 2017. Efficient generation of a continuous-wave, tunable 780 nm laser via an optimized cavity-enhanced frequency doubling of 1.56 µm at low pump powers. Optical and Quantum Electronics, 49, 1-16.

ILINSKII, Y. A., LIPKENS, B., LUCAS, T. S., VAN DOREN, T. W. & ZABOLOTSKAYA, E. A. 1998. Nonlinear standing waves in an acoustical resonator. The Journal of the Acoustical Society of America, 104, 2664-2674.

KARIMI, F., SOLEIMANIKAHNOJ, S. & KNEZEVIC, I. 2021. Tunable plasmon-enhanced second-order optical nonlinearity in transition metal dichalcogenide nanotriangles. Physical Review B, 103, L161401.

KOZLOVSKY, W. J., NABORS, C. & BYER, R. L. 1988. Efficient second harmonic generation of a diode-laser-pumped CW Nd: YAG laser using monolithic MgO: LiNbO/sub 3/external resonant cavities. IEEE journal of quantum electronics, 24, 913-919.

MARI, M. A., MEMON, Z. A., SHAIKH, P. H., MIRJAT, N. H. & SOOMRO, M. I. 2021. A review study on mathematical modeling of solar parabolic d ish‐Stirling system used for electricity generation. International Journal of Energy Research, 45, 18355-18391.

MEHTA, P. C. & RAMPAL, V. 1993. Lasers and holography, World Scientific.

SCRUBY, C. B. & DRAIN, L. E. 2019. Laser ultrasonics: techniques and applications, Routledge.

SERGEEVA, K. A., SERGEEV, A. A., MININ, O. V. & MININ, I. V. A Closer Look at Photonic Nanojets in Reflection Mode: Control of Standing Wave Modulation. Photonics, 2021. Multidisciplinary Digital Publishing Institute, 54.

VILLARREAL, J. M. G. & ARMENTA, J. A. G. 2021. Quantification of the field enhancement of surface plasmon under standing wave conditions. Plasmonics, 1-10.

WANG, J., ZHANG, K., GE, Y. & GUO, S. 2016. Efficient frequency doubler of 1560 nm laser based on a semi-monolithic resonant cavity with a PPKTP crystal. Optics Communications, 369, 194-198.

XIONG, M., LIU, M., JIANG, Q., ZHOU, J., LIU, Q. & DENG, H. 2021. Retro-reflective beam communications with spatially separated laser resonator. IEEE Transactions on Wireless Communications, 20, 4917-4928.

Published

2023-04-20

How to Cite

Twana Mohammed Kak Anwer, Nahlah Mohammed Qadir, & Suran Dunun Yaseen. (2023). Optimization of Variable Parameters in Diode Pumped SHG Nd-YAG Lasers. Zanco Journal of Pure and Applied Sciences, 35(2), 41–47. https://doi.org/10.21271/ZJPAS.35.2.5

Issue

Section

Mathematics, Physics and Geological Sciences