Evaluation the activity of Neuropeptide Y (NPY), Glucagon like peptide-1 and Ghrelin in controlling appetite in obesity in Erbil City
DOI:
https://doi.org/10.21271/ZJPAS.35.1.21Keywords:
Keywords: Obesity, Appetite, Hypothalamus, Neuropeptide (NPY), Glucagon-1 like peptide (GLP-1), Ghrelin.Abstract
The epidemic of obesity is at previously unheard-of heights. In 2016, it was predicted that 39% and 13% of individuals worldwide were overweight or obese, respectively. Obesity, which is defined as an imbalance between energy intake and expenditure, results from multiple interactions between genetic, environmental, psychological, behavioral, and nutritional variables, making it a difficult condition to study and treat. The present study aimed to approach the understanding of appetite, bodyweight regulation and the causes of obesity through studying gastrointestinal hormones such as (NPY, GLP-1, and ghrelin) hormones and their impact on controlling appetite in obesity. This comparative study included (152) participants (Obese and non-Obese) in the age range (30-66 years), both males and females who visited (The surgical specialty hospital cardiac center, Hawler teaching hospital, and Erbil’s court). A self-administered questionnaire was used for data collection. Fasting serum metabolic parameters and hormones were measured included (S.NPY, S.GLP-1, S.Ghrelin) and (S.Total Cholesterol, S.Triglycerides, S.HDL, S.LDL, and S.VLDL). According to the BMI of participants, there was a significant association (P < 0.001) between NPY, GLP-1 hormones and BMI, and a significant (p = 0.033) association between Ghrelin and BMI. The present study concluded that serum NPY, GLP-1 and Ghrelin hormones significantly impacted controlling appetite in obesity, would be a useful and important marker to evaluation for obesity. And a strong relationship between these hormones and obesity.
References
Acosta, A., Camilleri, M., Shin, A., Vazquez-Roque, M.I., Iturrino, J., Burton, D., O’Neill, J., Eckert, D., Zinsmeister, A.R., 2015. Quantitative Gastrointestinal and Psychological Traits Associated With Obesity and Response to Weight-Loss Therapy. Gastroenterology 148, 537-546.e4. https://doi.org/10.1053/j.gastro.2014.11.020
Ali Ahmad, M., Karavetian, M., Moubareck, C.A., Wazz, G., Mahdy, T., Venema, K., 2022. The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients 14, 1271. https://doi.org/10.3390/nu14061271
Alkan, I., Altunkaynak, B.Z., Altun, G., Erener, E., 2019. The investigation of the effects of topiramate on the hypothalamic levels of fat mass/obesity-associated protein and neuropeptide Y in obese female rats. Nutr. Neurosci. 22, 243–252. https://doi.org/10.1080/1028415X.2017.1374033
Atas, U., Erin, N., Tazegul, G., Elpek, G.O., Yildirim, B., 2021. Changes in ghrelin, substance P and vasoactive intestinal peptide levels in the gastroduodenal mucosa of patients with morbid obesity. Neuropeptides 89, 102164. https://doi.org/10.1016/j.npep.2021.102164
Baltazi, M., Katsiki, N., Savopoulos, C., Iliadis, F., Koliakos, G., Hatzitolios, A.I., 2011. Plasma neuropeptide Y (NPY) and alpha-melanocyte stimulating hormone (a-MSH) levels in patients with or without hypertension and/or obesity: a pilot study. Am. J. Cardiovasc. Dis. 1, 48–59.
Bhatti, M.S., Akbri, M.Z., Shakoor, M., 2001. Lipid profile in obesity. J. Ayub Med. Coll. Abbottabad JAMC 13, 31–33.
Briggs, D.I., Andrews, Z.B., 2011. Metabolic Status Regulates Ghrelin Function on Energy Homeostasis. Neuroendocrinology 93, 48–57. https://doi.org/10.1159/000322589
Briggs, D.I., Enriori, P.J., Lemus, M.B., Cowley, M.A., Andrews, Z.B., 2010. Diet-Induced Obesity Causes Ghrelin Resistance in Arcuate NPY/AgRP Neurons. Endocrinology 151, 4745–4755. https://doi.org/10.1210/en.2010-0556
de Boer, S.A., Lefrandt, J.D., Petersen, J.F., Boersma, H.H., Mulder, D.J., Hoogenberg, K., 2016. The effects of GLP-1 analogues in obese, insulin-using type 2 diabetes in relation to eating behaviour. Int. J. Clin. Pharm. 38, 144–151. https://doi.org/10.1007/s11096-015-0219-8
Fan, J., Liu, Y., Yin, S., Chen, N., Bai, X., Ke, Q., Shen, J., Xia, M., 2019. Small dense LDL cholesterol is associated with metabolic syndrome traits independently of obesity and inflammation. Nutr. Metab. 16, 7. https://doi.org/10.1186/s12986-019-0334-y
Flehmig, G., Scholz, M., Klöting, N., Fasshauer, M., Tönjes, A., Stumvoll, M., Youn, B.-S., Blüher, M., 2014. Identification of Adipokine Clusters Related to Parameters of Fat Mass, Insulin Sensitivity and Inflammation. PLOS ONE 9, e99785. https://doi.org/10.1371/journal.pone.0099785
Garaulet, M., Pérez-Llamas, F., Pérez-Ayala, M., Martínez, P., de Medina, F.S., Tebar, F.J., Zamora, S., 2001. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am. J. Clin. Nutr. 74, 585–591. https://doi.org/10.1093/ajcn/74.5.585
Garcés, C., Gutierrez-Guisado, J., Benavente, M., Cano, B., Viturro, E., Ortega, H., de Oya, M., 2005. Obesity in Spanish Schoolchildren: Relationship with Lipid Profile and Insulin Resistance. Obes. Res. 13, 959–963. https://doi.org/10.1038/oby.2005.111
Geliebter, A., Hashim, S.A., Gluck, M.E., 2008. Appetite-related gut peptides, ghrelin, PYY, and GLP-1 in obese women with and without binge eating disorder (BED). Physiol. Behav. 94, 696–699. https://doi.org/10.1016/j.physbeh.2008.04.013
Greenman, Y., Golani, N., Gilad, S., Yaron, M., Limor, R., Stern, N., 2004. Ghrelin secretion is modulated in a nutrient- and gender-specific manner. Clin. Endocrinol. (Oxf.) 60, 382–388. https://doi.org/10.1111/j.1365-2265.2004.01993.x
Greiling, H., Gressner, A.M., 1995. Lehrbuch der Klinischen Chemie und der Pathobiochemie. Schattauer, F.K. Verlag, Stuttgart New York.
Guo, X., Zhou, Z., Lyu, X., Xu, H., Zhu, H., Pan, H., Wang, L., Yang, H., Gong, F., 2022. The Antiobesity Effect and Safety of GLP-1 Receptor Agonist in Overweight/Obese Patients Without Diabetes: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 54, 458–471. https://doi.org/10.1055/a-1844-1176
Hanssen, R., Kretschmer, A.C., Rigoux, L., Albus, K., Edwin Thanarajah, S., Sitnikow, T., Melzer, C., Cornely, O.A., Brüning, J.C., Tittgemeyer, M., 2021. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol. Metab. 45, 101163. https://doi.org/10.1016/j.molmet.2021.101163
Iepsen, E.W., Lundgren, J., Holst, J.J., Madsbad, S., Torekov, S.S., 2016. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3–36. Eur. J. Endocrinol. 174, 775–784. https://doi.org/10.1530/EJE-15-1116
Ip, C.K., Zhang, L., Farzi, A., Qi, Y., Clarke, I., Reed, F., Shi, Y.-C., Enriquez, R., Dayas, C., Graham, B., Begg, D., Brüning, J.C., Lee, N.J., Hernandez-Sanchez, D., Gopalasingam, G., Koller, J., Tasan, R., Sperk, G., Herzog, H., 2019. Amygdala NPY Circuits Promote the Development of Accelerated Obesity under Chronic Stress Conditions. Cell Metab. 30, 111-128.e6. https://doi.org/10.1016/j.cmet.2019.04.001
Katus, U., Villa, I., Ringmets, I., Veidebaum, T., Harro, J., 2021. Neuropeptide Y gene variants in obesity, dietary intake, blood pressure, lipid and glucose metabolism: A longitudinal birth cohort study. Peptides 139, 170524. https://doi.org/10.1016/j.peptides.2021.170524
Koliaki, C., Liatis, S., Dalamaga, M., Kokkinos, A., 2020. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr. Obes. Rep. 9, 255–271. https://doi.org/10.1007/s13679-020-00396-9
Kubota, S., Yabe, D., 2021. Elevation of Fasting GLP-1 Levels in Child and Adolescent Obesity: Friend or Foe? J. Clin. Endocrinol. Metab. 106, e3778–e3780. https://doi.org/10.1210/clinem/dgab301
Milewicz, A., Bidzinska, B., Mikulski, E., Demissie, M., Tworowska, U., 2000. Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol. Endocrinol. 14, 196–203. https://doi.org/10.3109/09513590009167682
Minciună, I.-A., Hilda Orășan, O., Minciună, I., Lazar, A.-L., Sitar-Tăut, A.V., Oltean, M., Tomoaia, R., Puiu, M., Sitar-Tăut, D.-A., Pop, D., Cozma, A., 2021. Assessment of subclinical diabetic cardiomyopathy by speckle-tracking imaging. Eur. J. Clin. Invest. 51, e13475. https://doi.org/10.1111/eci.13475
Muñoz, J.S.G., Rodríguez, D.J., Morante, J.J.H., 2015. Diurnal rhythms of plasma GLP-1 levels in normal and overweight/obese subjects: lack of effect of weight loss. J. Physiol. Biochem. 71, 17–28. https://doi.org/10.1007/s13105-014-0375-7
Nauck, M., März, W., Jarausch, J., Cobbaert, C., Sägers, A., Bernard, D., Delanghe, J., Honauer, G., Lehmann, P., Oestrich, E., von Eckardstein, A., Walch, S., Wieland, H., Assmann, G., 1997. Multicenter evaluation of a homogeneous assay for HDL-cholesterol without sample pretreatment. Clin. Chem. 43, 1622–1629.
Newmyer, B.A., Nandar, W., Webster, R.I., Gilbert, E., Siegel, P.B., Cline, M.A., 2013. Neuropeptide Y is associated with changes in appetite-associated hypothalamic nuclei but not food intake in a hypophagic avian model. Behav. Brain Res. 236, 327–331. https://doi.org/10.1016/j.bbr.2012.08.015
Pardak, P., Filip, R., Woliński, J., 2022. The Impact of Sleep-Disordered Breathing on Ghrelin, Obestatin, and Leptin Profiles in Patients with Obesity or Overweight. J. Clin. Med. 11, 2032. https://doi.org/10.3390/jcm11072032
Purtell, L., Sze, L., Loughnan, G., Smith, E., Herzog, H., Sainsbury, A., Steinbeck, K., Campbell, L.V., Viardot, A., 2011. In adults with Prader–Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 45, 301–307. https://doi.org/10.1016/j.npep.2011.06.001
Rifai, N., Warnick, G.R., McNamara, J.R., Belcher, J.D., Grinstead, G.F., Frantz, I.D., 1992. Measurement of low-density-lipoprotein cholesterol in serum: a status report. Clin. Chem. 38, 150–160.
Rosická, M., Kršek, M., Matoulek, M., Jarkovská, Z., Marek, J., Justová, V., Lacinová, Z., 2003. Serum ghrelin levels in obese patients: the relationship to serum leptin levels and soluble leptin receptors levels. Physiol Res 61–66.
Samy, W., Hassanien, M., El, K., Khosheim, K., 2014. Role of Ghrelin, Leptin and Insulin Resistance in Development of Metabolic Syndrome in Obese Patients 3, 1–1000122.
Sauer, N., Rösch, T., Pezold, J., Reining, F., Anders, M., Groth, S., Schachschal, G., Mann, O., Aberle, J., 2013. A New Endoscopically Implantable Device (SatiSphere) for Treatment of Obesity—Efficacy, Safety, and Metabolic Effects on Glucose, Insulin, and GLP-1 Levels. Obes. Surg. 23, 1727–1733. https://doi.org/10.1007/s11695-013-1005-0
Shalitin, S., Gat-Yablonski, G., 2022. Associations of Obesity with Linear Growth and Puberty. Horm. Res. Paediatr. 95, 120–136. https://doi.org/10.1159/000516171
Soriano-Guillén, L., Barrios, V., Campos-Barros, Á., Argente, J., 2004. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J. Pediatr. 144, 36–42. https://doi.org/10.1016/j.jpeds.2003.10.036
Steinert, R.E., Feinle-Bisset, C., Asarian, L., Horowitz, M., Beglinger, C., Geary, N., 2017. Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol. Rev. 97, 411–463. https://doi.org/10.1152/physrev.00031.2014
Stinson, S.E., Jonsson, A.E., Lund, M.A.V., Frithioff-Bøjsøe, C., Aas Holm, L., Pedersen, O., Ängquist, L., Sørensen, T.I.A., Holst, J.J., Christiansen, M., Holm, J.-C., Hartmann, B., Hansen, T., 2021. Fasting Plasma GLP-1 Is Associated With Overweight/Obesity and Cardiometabolic Risk Factors in Children and Adolescents. J. Clin. Endocrinol. Metab. 106, 1718–1727. https://doi.org/10.1210/clinem/dgab098
Tassone, F., Broglio, F., Destefanis, S., Rovere, S., Benso, A., Gottero, C., Prodam, F., Rossetto, R., Gauna, C., van der Lely, A.J., Ghigo, E., Maccario, M., 2003. Neuroendocrine and Metabolic Effects of Acute Ghrelin Administration in Human Obesity. J. Clin. Endocrinol. Metab. 88, 5478–5483. https://doi.org/10.1210/jc.2003-030564
Tyszkiewicz-Nwafor, M., Jowik, K., Dutkiewicz, A., Krasinska, A., Pytlinska, N., Dmitrzak-Weglarz, M., Suminska, M., Pruciak, A., Skowronska, B., Slopien, A., 2021. Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity. Nutrients 13, 598. https://doi.org/10.3390/nu13020598
Villanueva-Peñacarrillo, M.L., Martín-Duce, A., Ramos-Álvarez, I., Gutiérrez-Rojas, I., Moreno, P., Nuche-Berenguer, B., Acitores, A., Sancho, V., Valverde, I., González, N., 2011. Characteristic of GLP-1 effects on glucose metabolism in human skeletal muscle from obese patients. Regul. Pept. 168, 39–44. https://doi.org/10.1016/j.regpep.2011.03.002
Woodward, O.R.M., Gribble, F.M., Reimann, F., Lewis, J.E., 2022. Gut peptide regulation of food intake – evidence for the modulation of hedonic feeding. J. Physiol. 600, 1053–1078. https://doi.org/10.1113/JP280581
Zigman, J.M., Bouret, S.G., Andrews, Z.B., 2016. Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends Endocrinol. Metab. 27, 54–63. https://doi.org/10.1016/j.tem.2015.09.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sawen Tahseen Taha , Leweza Belal Abbas

This work is licensed under a Creative Commons Attribution 4.0 International License.