Gas-Sensing Performance of TiO2 Nanorod Arrays Synthesized by Solvothermal Method
DOI:
https://doi.org/10.21271/ZJPAS.37.1.4Keywords:
TiO2, FTO, Nanorods, Solvothermal, Gas sensorAbstract
In this study, titanium dioxide (TiO₂) nanorods formed through by solvothermal growth on a glass substrate coated with FTO (fluorine-doped tin oxide) are synthesized in order to fabricate an Al/TiO₂-based gas sensor. This is valuable due to the morphology and nanostructure of the sensing film have an important effect on gas sensors' abilities for operation. Investigation using XRD and FESEM demonstrated the synthesized TiO2 nanorods' crystal nanostructure. Perfectly ordered and uniform TiO2 nanorods synthesized in an aqueous solution by varying the volumetric ratio of HCl to Ethanol and the acidity. At room temperature, the current–voltage (I–V) characteristic and the sensor's sensitivity to various reducing (ethanol and methanol) and oxidizing (oxygen, and carbon monoxide) gases were studied. For O2, CO, methanol, and ethanol gases, the corresponding relative sensitivity (Response) to a bias voltage (V) of 0.5 V is 53.758, 91.248, 108.298 and 144.689 %. While the gas sensor was in the dark and at room temperature, it was more sensitive to ethanol than other gases with good response and stability by the relative deviation of the gas response sensitivity was less than 2%. As a result, when compared to oxygen, carbon monoxide, and methanol gases, which have strong response sensitivity and stability, the study shows that TiO2 nanorods are a suitable method of enhancing ethanol sensing abilities.
References
al-Algawi, S. D., Rasheed, R. T. R. & Rhoomi, Z. R., 2017. Structural and Optical Properties of Annealed TiO2 Powder Synthesized by Hydrothermal Method. Iraqi Journal of Science, pp.1683-1693.
Arthi, G., Archana, J., Navaneethan, M., Ponnusamy, S., Hayakawa, Y., Muthamizhchelvan, C. & Ramaraj, S. G., 2023. Solvothermal synthesis of 3D hierarchical rutile TiO2 nanostructures for efficient dye-sensitized solar cells. Materials Letters, 337, 133961.
Chang, S. J., Weng, W. Y., Hsu, C. L. & Hsueh, T. J., 2010. High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles. Nano Communication Networks, 1, pp.283-288.
Chou, P.-C., Chen, H.-I., Liu, I.-P., Chen, C.-C., Liou, J. K., Hsu, K.-S. & Liu, W. C., 2015. On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor. IEEE Sensors Journal, 15, pp.3711-3715.
Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X. & Wang, Y., 2020. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. Journal of Alloys and Compounds, 820, 153194.
Gakhar, T. & Hazra, A., 2020. Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds. Nanoscale, 12, pp.9082-9093.
Gao, X., Li, Y., Zeng, W., Zhang, C. & Wei, Y., 2017. Hydrothermal synthesis of agglomerating TiO2 nanoflowers and its gas sensing. Journal of Materials Science: Materials in Electronics, 28, pp.18781-18786.
Goel, N., Kunal, K., Kushwaha, A. & Kumar, M., 2023. Metal oxide semiconductors for gas sensing. Engineering Reports, 5, e12604.
Govardhan, K. & Nirmala Grace, A., 2016. Temperature optimized ammonia and ethanol sensing using Ce doped tin oxide thin films in a novel flow metric gas sensing chamber. Journal of Sensors, 2016, 7652450.
Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, L. & Rehacek, V., 2004. Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification. Sensors and Actuators B: Chemical, 103, pp.300-311.
Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L. & Li, Y., 2021. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 360, 115544.
Khizir, H. A. & Abbas, T. A., 2021. Hydrothermal growth and controllable synthesis of flower-shaped TiO2 nanorods on FTO coated glass. Journal of Sol-Gel Science and Technology, 98, pp.487-496.
Khizir, H. A. & Abbas, T. A., 2022. Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EGFET) pH sensing applications. Sensors and Actuators A: Physical, 333, 113231.
Kohl, D., 1989. Surface processes in the detection of reducing gases with SnO2-based devices. Sensors and actuators, 18, pp.71-113.
Krishna, K. G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S. & Joshi, D., 2022. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical, 341, 113578.
Kumar, R., Zheng, W., Liu, X., Zhang, J. & Kumar, M., 2020. MOS2‐based nanomaterials for room‐temperature gas sensors. Advanced Materials Technologies, 5, 1901062.
Liu, X., Chen, N., Han, B., Xiao, X., Chen, G., Djerdj, I. & Wang, Y. 2015. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale, 7, pp.14872-14880.
Lupan, O., Postica, V., Ababii, N., Hoppe, M., Cretu, V., Tiginyanu, I., Sontea, V., Pauporté, T., Viana, B. & Adelung, R., 2016. Influence of CuO nanostructures morphology on hydrogen gas sensing performances. Microelectronic Engineering, 164, pp.63-70.
Machín, A., Fontánez, K., Arango, J. C., Ortiz, D., De León, J., Pinilla, S., Nicolosi, V., Petrescu, F. I., Morant, C. & Márquez, F., 2021. One-dimensional (1D) nanostructured materials for energy applications. Materials, 14, 2609.
Malekshahi Byranvand, M., Nemati Kharat, A., Fatholahi, L. & Malekshahi Beiranvand, Z., 2013. A review on synthesis of nano-TiO2 via different methods. Journal of nanostructures, 3, pp.1-9.
Mei, H., Zhou, S., Lu, M., Zhao, Y. & Cheng, L., 2020. Construction of pine-branch-like α-Fe2O3/TiO2 hierarchical heterostructure for gas sensing. Ceramics International, 46, pp.18675-18682.
Noman, M. T., Ashraf, M. A. & Ali, A., 2019. Synthesis and applications of nano-TiO2: A review. Environmental Science and Pollution Research, 26, pp.3262-3291.
Rzaij, J. M. & Abass, A. M. 2020. Review on: TiO2 thin film as a metal oxide gas sensor. J. Chem. Rev, 2, pp.114-121.
Tian, X., Cui, X., Lai, T., Ren, J., Yang, Z., Xiao, M., Wang, B., Xiao, X. & Wang, Y., 2021. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Materials Science, 3, pp.390-403.
Wang, M., Zhu, Y., Meng, D., Wang, K. & Wang, C., 2020. A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures. Materials Letters, 277.
Wu, K., Debliquy, M. & Zhang, C., 2022. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chemical Engineering Journal, 444, pp.136449.
Wu, M., Long, J., Huang, A., Luo, Y., Feng, S. & Xu, R., 1999. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir, 15, pp.8822-8825.
Zhou, J., Song, B., Zhao, G. & Han, G., 2012. Effects of acid on the microstructures and properties of three-dimensional TiO2 hierarchical structures by solvothermal method. Nanoscale research letters, 7, pp.1-10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hersh Ahmed Khizir

This work is licensed under a Creative Commons Attribution 4.0 International License.