A theoretical investigation of S-Numerical Range with the respect to a family of projections

Authors

  • Wlat Hamad Department of Mathematics, Faculty of Education, Soran University, Soran, Erbil, Kurdistan Region, Iraq
  • Botin Ibrahim Department of Mathematics, Faculty of Education, Soran University, Soran, Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.34.6.4

Keywords:

S-numerical range, projections, spectrum, bounded operator

Abstract

The idea of the -numerical range of a bounded linear operator on a complex Hilbert space with respect to a family of projections is introduced in this study. We provide a detailed description and discuss its relationship to the -numerical range and generalizations such as product S-numerical range. The significance of this new concept comes from its unifying character.

References

Ahmed Muhammad, Wlat Hamad 2019, 'A Numerical Investigation of the c-Numerical Ranges of Differential Operators', Bulletin of the Iranian Mathematical Society, vol 45, no. 6, pp. 1755-1775.

Bakić, D 1998, 'Compact operators, the essential spectrum and the essential numerical range', Mathematical Communications, vol 3, pp. 103-108.

Bayasgalan, T 1991, 'The numerical range of linear operators in spaces with an indefinite metric', Acta math. Hungar., vol 57, pp. 7-9.

Bebiano, N., Lemos, R., Da providencia, J. and Soares 2005, 'On the geometry of numerical ranges in spaces with an indefinite inner product', Linear algebra and its applications, vol 399, pp. 17-34.

Berivan Faris Azeez , Ahmed Muhammad 2020, 'Some results on S-numerical range of operator matrices', ZJPAS , vol 32, no. 3, pp. 57-63.

C.-K. Li and Y.-T. Poon, 2011, 'Generalized numerical ranges and quantum error correction', J. Operator theory, vol 66, p. 335–351.

Dirr, Gunther, and Frederik vom Ende 2020, 'The C-numerical range in infinite dimensions', Linear and Multilinear Algebra, vol 68, no. 4, pp. 652-678.

E. Rogers, K. Galkowski, and D.-H. Owens 2007, 'Control Systems Theory and Applications for Linear Repetitive Processes ', Springer, London.

Gawron P, Puchała Z, Miszczak JA, Skowronek Ł, Życzkowski K 2010, 'Restricted numerical range: a versatile tool in the theory of quantum information', Journal of Mathematical Physics, vol 51, no. 10, pp. 102-204.

Gawron, Piotr. "Z. Pucha la, JA Miszczak, L. Skowronek, K. Zyczkowski. 2011, 'product numerical range in a space with tensor product struture', Linear Algebra Appl., vol 434, no. 1, pp. 327-342.

K. Li, N.K. Tsing, F. Uhlig 1996, ' Numerical ranges of an operator in an indefinite inner product space', Linear Algebra, vol 1, pp. 1-17.

Muiruri, P,NK,WMS 2018, ' On the Norm of Basic Elementary Operator in a Tensor Product', International Journal of Scientific and Innovative Mathematical Research (IJSIMR), vol 6, no. 6, pp. 15-22.

N. Bebiano, J. Da Providˆencia 1998, 'Numerical ranges in physics', Linear andMultilinear Algebra, vol 43, p. 327–337.

Nakazato,H., Bebiano, N. & D A Providencia, J. 2011, 'The numerical range of linear operators on the 2-dimentional krein space', electronic journal of linear algebra, vol 22, pp. 430-442.

R.D. Grigorieff, R. Platto 1995, ' On the minimax equality for seminorms', Linear Algebra Appl., vol 221, pp. 227-243.

Toeplitz, O 1918, 'Das algebraische Analogou zu einem satze von fejer', Math. Zeit, vol 2, pp. 187-197.

Waed D., Joachim K. and Nazife E. Ö. 2018, 'On the numerical range with respect to a family of projections', Methods of Functional Analysis and Topology, vol 4, no. 4, p. 297–304.

Wlat Hamad, Ahmed Muhammad 2020, 'Elliptic Numerical Range of Matrices', International Mathematical Forum, vol 15, no. 7, pp. 293-315.

Zhang, D., L. Hou, and L. Ma. 2017, ' Properties of matrices with numerical ranges in a sector', Bulletin of the Iranian Mathematical Society , vol 43, no. 6, pp. 1699-1707..

Published

2022-12-20

How to Cite

Hamad, W., & Botin Ibrahim. (2022). A theoretical investigation of S-Numerical Range with the respect to a family of projections. Zanco Journal of Pure and Applied Sciences, 34(6), 28–36. https://doi.org/10.21271/ZJPAS.34.6.4

Issue

Section

Mathematics, Physics and Geological Sciences