Transport Parameters and Dielectric Strength of Electrical Discharges in an Arc Discharges in Carbon Dioxide Gas

Authors

  • Idris H. Salih Tishk International University, KRG, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.32.6.17

Keywords:

CO2 electric discharge, EEDF, dielectric strength, swarm parameters, electron temperature, reduced electric field strength (E/N)cr.

Abstract

      The two-term approximation solution of Boltzmann equation analysis has been used to calculate the electron energy distribution function (EEDF), dielectric strength and the electron swarm parameters in carbon dioxide. The electron swarm parameters have been calculated over the wide range of reduced density electric field strength E/N varying from 0.1 to 1000 Td ( 1Td= 10-17 V.cm2). These parameters, namely electron drift velocity, mean electron energy, electron temperature, characteristic energy, transverse diffusion coefficient, electron mobility, reduced ionization and attachment Townsend coefficients have been compared with the available previous theoretical and experimental results. The values of the critical reduced electric field strength (E/N)cr from the curves of reduced effective ionization coefficient (α-η)/N are calculated. In addition, excitation rate and fractional power transfer to elastic and inelastic collisions are explained.

References

Alger, S., & Rees, J. (1976). Ionization, attachment and negative ion reactions in carbon dioxide. Journal of Physics D: Applied Physics, 9(16), 2359.

Beaty, E., Dutton, J., & Pitchford, L. (1980). Electron swarm data relevant to high-voltage insulation. In Gaseous Dielectrics II (pp. 25-31): Elsevier.

Brand, K., & Kopainsky, J. (1979). Breakdown field strength of unitary attaching gases and gas mixtures. Applied physics, 18(4), 321-333.

Christophorou, L. G., Olthoff, J. K., & Van Brunt, R. J. (1997). Sulfur hexafluoride and the electric power industry. IEEE Electrical Insulation Magazine, 13(5), 20-24.

Conti, V., & Williams, A. (1975). Ionization growth in carbon dioxide. Journal of Physics D: Applied Physics, 8(18), 2198.

Dahl, D. A., Teich, T. H., & Franck, C. M. (2012). Obtaining precise electron swarm parameters from a pulsed Townsend setup. Journal of Physics D: Applied Physics, 45(48), 485201.

Davies, D. K. (1978). Ionization and attachment coefficients in CO2: N2: He and pure CO2. Journal of Applied Physics, 49(1), 127-131.

De Urquijo, J., Yousfi, M., Juárez, A., Bekstein, A., Basurto, E., Benhennis, M., & Merbahi, N. (2009). Electron Swarm Coefficients in CO2-Air Mixtures. Paper presented at the International Conference on Phenomena in Ionised Gases.

Deng, Y., Lu, C., & Xiao, D. (2012). Electron swarm parameters in c-C4F8 and CO2 gas gixtures from Boltzmann equation analysis. IEEE Transactions on Plasma Science, 40(10), 2671-2677.

Dutton, J. (1975). A survey of electron swarm data. Journal of Physical and Chemical Reference Data, 4(3), 577-856.

Egüz, E. A., Chachereau, A., Hösl, A., & Franck, C. (2019). Measurements of Swarm Parameters in C4F7N: O2: CO2, C5F10O: O2: CO2 and C5F10O: O2: N2 Mixtures. Paper presented at the 19th International Symposium on High Voltage Engineering (ISH 2019).

Elford, M. (1966). The drift velocity of electrons in carbon dioxide at 293° K. Aust. J. Phys, 19, 629.

Elford, M., & Haddad, G. (1980). The drift velocity of electrons in carbon dioxide at temperatures between 193 and 573 K. Australian Journal of Physics, 33(3), 517-530.

Frost, L., & Phelps, A. (1962). Rotational excitation and momentum transfer cross sections for electrons in H 2 and N 2 from transport coefficients. Physical Review, 127(5), 1621.

Grofulovic, M. (2019). Energy storage and transfer in non-equilibrium CO2 plasmas.

Grofulović, M., Alves, L. L., & Guerra, V. (2016). Electron-neutral scattering cross sections for CO2: a complete and consistent set and an assessment of dissociation. Journal of Physics D: Applied Physics, 49(39), 395207.

Haefliger, P., & Franck, C. (2018). Detailed precision and accuracy analysis of swarm parameters from a pulsed Townsend experiment. Review of Scientific instruments, 89(2), 023114.

Hake Jr, R., & Phelps, A. (1967). Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O 2, CO, and C O 2. Physical Review, 158(1), 70.

Hasegawa, H., Date, H., Shimozuma, M., Yoshida, K., & Tagashira, H. (1996). The drift velocity and longitudinal diffusion coefficient of electrons in nitrogen and carbon dioxide from 20 to 1000 Td. Journal of Physics D: Applied Physics, 29(10), 2664.

Hernández-Ávila, J., Basurto, E., & De Urquijo, J. (2002). Electron transport and swarm parameters in CO2 and its mixtures with SF6. Journal of Physics D: Applied Physics, 35(18), 2264.

Holstein, T. (1946). Energy distribution of electrons in high frequency gas discharges. Physical Review, 70(5-6), 367.

Itoh, H., Shimozuma, M., & Tagashira, H. (1980). Boltzmann equation analysis of the electron swarm development in SF6 and nitrogen mixtures. Journal of Physics D: Applied Physics, 13(7), 1201.

Jawad, E. A., & Jassim, M. (2019). Studying the effect of adding buffer gases to CO2 gas on the electron transport parameter. Energy Procedia, 157, 117-127.

Jiang, P., & Economou, D. J. (1993). Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under dc and ac fields. Journal of applied physics, 73(12), 8151-8160.

Kieffer, L. A Compilation of Electron Collision Cross-Section Data for Modeling Gas Discharge Lasers, 1973. Retrieved from

Koushki, A., Zand, M., Haghighi, H., & Neshati, R. (2015). Numerical solution of Boltzmann's transport equation to predict characteristics of TEA CO2 lasers. Optik, 126(23), 3601-3604.

Kucukarpaci, H., & Lucas, J. (1979). Simulation of electron swarm parameters in carbon dioxide and nitrogen for high E/N. Journal of Physics D: Applied Physics, 12(12), 2123.

Lakshminarasimha, C., & Lucas, J. (1977). The ratio of radial diffusion coefficient to mobility for electrons in helium, argon, air, methane and nitric oxide. Journal of Physics D: Applied Physics, 10(3), 313.

Laska, L., Mašek, K., Krasa, J., & Peřina, V. (1984). Dielectric properties of SF 6 mixtures containing oxygen and other gases. Czechoslovak Journal of Physics B, 34(10), 1038-1047.

Li, X., Guo, X., Zhao, H., Jia, S., & Murphy, A. B. (2015). Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa. Journal of Applied Physics, 117(14), 143302.

Long, Y., Guo, L., Shen, Z., Chen, C., Chen, Y., Li, F., & Zhou, W. (2019). Ionization and attachment coefficients in C4 F7 N/N2 gas mixtures for use as a replacement to SF6. IEEE Transactions on Dielectrics and Electrical Insulation, 26(4), 1358-1362.

Morgan, W., & Penetrante, B. (1990). ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas. Computer Physics Communications, 58(1-2), 127-152.

Nakamura, Y. (1995). Drift Velocity and Longitudinal Diffusion Coefficient of Electrons in CO2/Ar Mixtures and Electron Collision Cross Sections for CO2 Molecules. Australian Journal of Physics, 48(3), 357-364.

Nakamura, Y., & Lucas, J. (1978). Electron drift velocity and momentum cross-section in mercury, sodium and thallium vapours. II. Theoretical. Journal of Physics D: Applied Physics, 11(3), 337.

Nechmi, H. E., Beroual, A., Girodet, A., & Vinson, P. (2017). Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, 24(2), 886-892.

Nighan, W. L. (1970). Electron Energy Distributions and Collision Rates in Electrically Excited N2, CO, and CO2. Physical Review A, 2(5), 1989.

Ogloblina, P., Tejero-del-Caz, A., Guerra, V., & Alves, L. L. (2020). Electron impact cross sections for carbon monoxide and their importance in the electron kinetics of CO2–CO mixtures. Plasma Sources Science and Technology, 29(1), 015002 (16pp).

Othman, M. M., Taha, S. A., & Sailh, I. H. (2019). Solving of the Boltzmann transport equation using two-term approximation for pure electronegative gases (SF6, CCl2F2). ZANCO Journal of Pure and Applied Sciences, 31(s4), 7-25.

Othman, M. M., Taha, S. A., & Salih, I. H. (2019). Analysis of Electron Transport Coefficients in SiH4 Gas Using Boltzmann Equation in the Presence of Applied Electric Field. ZANCO Journal of Pure and Applied Sciences, 31(1), 77-88.

Pack, J., Voshall, R., & Phelps, A. (1962). Drift velocities of slow electrons in krypton, xenon, deuterium, carbon monoxide, carbon dioxide, water vapor, nitrous oxide, and ammonia. Physical Review, 127(6), 2084.

Pierantozzi, R. (2000). Carbon dioxide. Kirk‐Othmer Encyclopedia of Chemical Technology.

Pietanza, L., Colonna, G., D'Ammando, G., Laricchiuta, A., & Capitelli, M. (2016). Electron energy distribution functions and fractional power transfer in “cold” and excited CO2 discharge and post discharge conditions. Physics of Plasmas, 23(1), 013515.

Pietanza, L., Colonna, G., D’Ammando, G., Laricchiuta, A., & Capitelli, M. (2016). Non equilibrium vibrational assisted dissociation and ionization mechanisms in cold CO2 plasmas. Chemical Physics, 468, 44-52.

Raju, G. G. (2018). Gaseous electronics: tables, atoms, and molecules: CRC Press.

Rees, J. (1964). Measurements of Townsend's energy factor k1 for electrons in carbon dioxide. Australian Journal of Physics, 17(4), 462-471.

Roznerski, W., & Leja, K. (1984). Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N. Journal of Physics D: Applied Physics, 17(2), 279.

Saelee, H., Lucas, J., & Limbeek, J. (1977). Time-of-flight measurement of electron drift velocity and longitudinal diffusion coefficient in nitrogen, carbon monoxide, carbon dioxide and hydrogen. IEE Journal on Solid-State and Electron Devices, 1(4), 111-116.

Seeger, M., Avaheden, J., Pancheshnyi, S., & Votteler, T. (2016). Streamer parameters and breakdown in CO2. Journal of Physics D: Applied Physics, 50(1), 015207.

Smith, K., & Thomson, R. M. (1978). Computer modeling of gas lasers: Springer.

Sun, H., Rong, M., Wu, Y., Chen, Z., Yang, F., Murphy, A. B., & Zhang, H. (2015). Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications. Journal of Physics D: Applied Physics, 48(5), 055201.

Tanaka, Y. (2004). Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300–3500 K. Journal of Physics D: Applied Physics, 37(6), 851.

Townsend, J. S. (1902). LXVI. The conductivity produced in gases by the aid of ultra-violet light. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3(18), 557-576.

Tuan, D. A. (2014). Calculations of electron transport coefficients in Cl2-Ar, Cl2-Xe and Cl2-O2 mixtures. Journal of the Korean Physical Society, 64, 23-29.

Tuan, D. A. (2016). Analysis of electron transport coefficients in binary mixtures of TEOS gas with Kr, Xe, He and Ne gases for using in plasma assisted thin-film deposition. Journal of Electrical Engineering and Technology, 11(2), 455-462.

Uchii, T., Hoshina, Y., Kawano, H., Suzuki, K., Nakamoto, T., & Toyoda, M. (2007). Fundamental research on SF6-free gas insulated switchgear adopting CO2 gas and its mixtures. ISETS07.

Vass, M., Korolov, I., Loffhagen, D., Pinhao, N., & Donkó, Z. (2017). Electron transport parameters in CO2: scanning drift tube measurements and kinetic computations. Plasma Sources Science and Technology, 26(6), 065007.

Wagner, E., Davis, F., & Hurst, G. (1967). Time‐of‐Flight Investigations of Electron Transport in Some Atomic and Molecular Gases. The Journal of Chemical Physics, 47(9), 3138-3147.

Wang, W., & Bogaerts, A. (2016). Effective ionisation coefficients and critical breakdown electric field of CO2 at elevated temperature: effect of excited states and ion kinetics. Plasma Sources Science and Technology, 25(5), 055025.

Wang, W., Murphy, A. B., Rong, M., Looe, H. M., & Spencer, J. W. (2013). Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. Journal of Applied Physics, 114(10), 103301.

Wang, W., Tu, X., Mei, D., & Rong, M. (2013). Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data. Physics of Plasmas, 20(11), 113503.

Wedding, A. B. (1985). Electron swarm parameters in a CO2: N2: He: CO gas mixture. Journal of Physics D: Applied Physics, 18(12), 2351.

Xiao, D., Li, X., & Xu, X. (2001). Swarm parameters in SF6 and CO2 gas mixtures. Journal of Physics D: Applied Physics, 34(24), L133.

Xiaoling, Z., Juntao, J., & Dengming, X. (2016). Breakdown Electric Field of Hot 30% CF3I/CO2 Mixtures at Temperature of 300–3500 K During Arc Extinction Process. Plasma Science and Technology, 18(11), 1095.

Yousfi, M., de Urquijo, J., Juarez, A., Basurto, E., & Hernandez-Avila, J. L. (2009). Electron Swarm Coefficients in $hbox {CO} _ {2} $–$hbox {N} _ {2} $ and $hbox {CO} _ {2} $–$hbox {O} _ {2} $ Mixtures. IEEE Transactions on Plasma Science, 37(6), 764-772.

Yun-Kun, D., & Deng-Ming, X. (2013). The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis. Chinese Physics B, 22(3), 035101.

Zhao, H., Deng, Y., & Lin, H. (2017). Study of the synergistic effect in dielectric breakdown property of CO2–O2 mixtures. AIP Advances, 7(9), 095102.

Zhao, H., Gu, W., & Li, X. (2017). Study of the Insulating and Arc-quenching Performance of CO2 and Its Mixtures: A Brief Review. PLASMA PHYSICS AND TECHNOLOGY, 4(1), 91-94.

Zhao, H., Li, X., Jia, S., & Murphy, A. B. (2013). Dielectric breakdown properties of SF6–N2 mixtures at 0.01–1.6 MPa and 300–3000 K. Journal of Applied Physics, 113(14), 143301.

Zheng, Y., Yan, X., Chen, W., Zhou, W., Hu, S., & Li, H. (2019). Calculation of electrical insulation of C4F7N/CO2 mixed gas by avalanche characteristics of pure gas. Plasma Research Express, 1(2), 025013.

Published

2020-12-20

How to Cite

Idris H. Salih. (2020). Transport Parameters and Dielectric Strength of Electrical Discharges in an Arc Discharges in Carbon Dioxide Gas. Zanco Journal of Pure and Applied Sciences, 32(6), 158–175. https://doi.org/10.21271/ZJPAS.32.6.17