Optimization of biomass and some metabolites productivity of Merismopedia tenuissima and Spirulina (Arthrospira) platensis grown under stress conditions
DOI:
https://doi.org/10.21271/ZJPAS.32.5.14Keywords:
Spirulina platensis, Merismopedia tenuissima, Nutrients stress, pH, Metabolites, Productivity.Abstract
The attention to using cyanobacteria as a nutrient supplement has increased due to their nutritional value and high bioactive metabolites contents. The reason behind designing such a study is to illustrate and clarify stress conditions effects like nitrogen and phosphorus supplementation and deficiency, salinity stress, and different pH values on the biomass, lipid, protein, amino acid, and carbohydrate productivities of Merismopedia tenuissima and Spirulina (Arthrospira) platensis. The obtained results revealed that an increase in sodium nitrate by 100% caused an improvement in biomass, protein, and amino acid’s productivity of S. platensis and M. tenuissima by 7.02 % and 7.05, 9.2% and 47.5%, 11.8% and19.5, respectively while 100% nitrogen deficiency enhanced lipid productivity of S. platensis and M. tenuissima to 41% and 94%. Moreover, phosphorus limitation led to a reduction in biomass, protein, amino acid, and carbohydrate S. platensis to 24.3%, 21.1%, 43.3%, and 28.1%, respectively. However, phosphorus-free medium showed an increase in lipid productivity of S. platensis and M. tenuissima by 46.8% and 81.8%, respectively. The addition of 0.05 M NaCl concentration to S. platensis medium stimulates the biomass, protein, and carbohydrate productivity by 6%, 7.75%, and 18.1%, respectively, whilst, among all concentration, zero M NaCl (control) resulted in increasing biomass, protein, and amino acids, whilst, high concentration (0.3M) of NaCl enhanced lipid productivity to 125.9% and 153.5% at S. platensis and M. tenuissima, respectively. Applications of high alkalinity (pH 9) increased the productivities of all studied metabolites in S. platensis and reduction of all mention metabolites in M. tenuissima.
References
Aziz, F. H. and Yasin, S. A. 2019. Twenty-five new records of algae in eight artificial fish ponds in Erbil. ZANCO Journal of Pure and Applied Sciences, 31, 153-166.
Burja, A., Abou-Mansour, E., Banaigs, B., Payri, C., Burgess, J. and Wright, P. J. 2002. Culture of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. Journal of microbiological methods, 48, 207-219.
Church, J., Hwang, J.-H., Kim, K.-T., McLean, R., Oh, Y.-K., Nam, B., Joo, J. C. and Lee, W. H. 2017. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource technology, 243, 147-153.
Colla, L. M., Reinehr, C. O., Reichert, C., Costa, J. and Alberto, V. 2007. Production of biomass and nutraceutical compounds by Spirulina Platensis under different temperature and nitrogen regimes. Bioresource technology, 98, 1489-1493.
Courchesne, N. M. D., Parisien, A., Wang, B. and Lan, C. Q. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of biotechnology, 141, 31-41.
De Bhowmick, G., Koduru, L. and Sen, R. 2015. Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renewable Sustainable Energy Reviews, 50, 1239-1253.
De Morais, M. G., Vaz, B. d. S., de Morais, E. G., Costa, J. and Alberto, V. 2015. Biologically active metabolites synthesized by microalgae. BioMed research international, 2015, 1-15.
Drevon, B. and Schmit, J. 1964. La réaction sulfophosphovanillique dans l’étude des lipides sériques. Bull. Trav. Soc. Pharm. Lyon, 8, 173-178.
El-Shouny, W., Sharaf, M., Abomohra, A. and Abo-Eleneen, M. 2015. Production enhancement of some valuable compounds of Arthrospira Platensis . Journal of Basic Environmental Sciences, 2, 74-83.
Fatma, T., Sarada, R. and Venkataraman, L. 1994. Evaluation of selected strains of Spirulina for their constituents. Phykos, 33, 89-97.
Fawzy, M. A. 2017. Fatty acid characterization and biodiesel production by the marine microalga Asteromonas gracilis: statistical optimization of medium for biomass and lipid enhancement. Marine Biotechnology, 19, 219-231.
Gill, P. K., Sharma, A. D., Singh, P. and Bhullar, S. S. 2002. Osmotic stress-induced changes in germination, growth and soluble sugar content of Sorghum bicolor (L.) Moench seeds. Bulgarian Journal of Plant Physiology, 28, 12-25.
Hedge, J. and Hofreiter, B. 1962. Determination of reducing sugars and carbohydrates. In: WHISTLER, R. L. A. W., M.L. (ed.) Methods in Carbohydrate Chemistry. New York: Academic Press.
Hifney, A. F., Issa, A. A. and Fawzy, M. A. 2013. Abiotic stress induced production of β-carotene, allophycocyanin and total lipids in Spirulina sp. Journal of Biology and Earth Science, 3, 54-64.
Hu, J., Jin, L., Wang, X., Cai, W., Liu, Y. and Wang, G. 2014. Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum. Advances in Space Research, 53, 30-36.
Imran, R., Hamid, A., Amjad, R., Chaudhry, C., Yaqub, G. and Akhtar, S. 2014. Evaluation of heavy metal concentration in the poultry feeds. Journal of Biodiversity, 5, 394-404.
Jonte, L., Rosales-Loaiza, N., Bermúdez-González, J. and Morales, E. 2013. Urea fed-batch cultures of the cyanobacterium Phormidium sp. as a function of the salinity and age of cultures. Revista Colombiana de Biotecnología, 15, 38-46.
Jung, F., Krüger-Genge, A., Waldeck, P. and Küpper, J.-H. 2019. Spirulina Platensis , a super food? Journal of Cellular Biotechnology, 5, 43-54.
Kirrolia, A., Bishnoi, N. and Singh, N. 2011. Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. Journal of Algal Biomass Utilization, 2, 28-34.
Lee, Y. P. and Takahashi, T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical biochemistry, 14, 71-77.
Loaiza, N. R., Avendaño, D., Otero, A. and Morales, E. 2010. Crecimiento, producción de pigmentos y proteínas de la microalga Dunaliella viridis (Chlorophyta) en cultivos semicontinuos. Boletín del Centro de Investigaciones Biológicas, 42.
Lowry, O. H., Rosebrough, N. J. and Farr, A. L. 1951. Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-271.
Markou, G., Chatzipavlidis, I. and Georgakakis, D. 2012. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) Platensis : improvements through phosphorus limitation process. BioEnergy research, 5, 915-925.
Menegol, T., Diprat, A. B., Rodrigues, E. and Rech, R. 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science, 37, 28-37.
Metzner, H., Rau, H. and Senger, H. 1965. Untersuchungen zur synchronisierbarkeit einzelner pigmentmangel-mutanten von Chlorella. Planta, 65, 186-194.
Minhas, A. K., Hodgson, P., Barrow, C. J. and Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in microbiology, 7, 546.
Moradi, F. and Ismail, A. M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of botany, 99, 1161-1173.
Neha, K. and Khan, S. 2016. Effect of nitrogen, phosphorus concentrations, pH and salinity ranges on growth, biomass and lipid accumulation of Chlorella vulgaris. International Journal of Pharmaceutical Sciences, 7, 397-405.
Prescott, G. 1959. How to Know the Fresh Water Algae, Vol. 1. Cranbrook press, Michigan.
Rai, S. V. and Rajashekhar, M. 2016. Effect of pH, salinity and temperature on the growth of six species of cyanobacteria isolated from Arabian Sea coast of Karnataka. International Journal of Biosciences, 9, 1.
Rippka, R. 1988. Isolation and purification of cyanobacteria. Methods in enzymology, 167, 3-27.
Rippka, R. 1992. Pasteur culture collection of cyanobacterial strains in axenic culture. Catalogue, 1, 1-103.
Sassano, C., Gioielli, L., Ferreira, L., Rodrigues, M., Sato, S., Converti, A. and Carvalho, J. 2010. Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) Platensis using ammonium chloride as nitrogen source. Biomass & BioEnergy research, 34, 1732-1738.
Seghiri, R., Kharbach, M. and Essamri, A. 2019. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality, 2019.
Setta, B. R., Barbarino, E., Passos, F. B. and Lourenço, S. O. 2014. An assessment of the use fulness of the cyanobacterium Synechococcus subsalsus as a source of biomass for biofuel production. Latin American Journal of Aquatic Research, 42, 364-375.
Sharma, K. K., Schuhmann, H. and Schenk, P. M. 2012. High lipid induction in microalgae for biodiesel production. Energies, 5, 1532-1553.
Sheikh, T., Baba, Z. and Sofi, P. 2006. Effect of NaCl on growth and physiological traits of Anabaena cylindrica L. Pakistan Journal of Biological Sciences, 9, 2528-2530.
Thingujam, I., Keithellakpam, O. S., Oinam, A. S., Oinam, G., Nath, T. O. and Dutt, S. G. 2016. Optimization of Chlorophyll a Production of Some Cyanobacteria from Rice Paddies in Manipur, India Through Nutritional and Environmental Factors. Philippine Journal of Science, 145, 373-383.
Thornton, D. C. 2009. Effect of low pH on carbohydrate production by a marine planktonic diatom (Chaetoceros muelleri). International Journal of Ecology, 2009.
Toma, J. J. 2019. Algae as indicator to assess trophic status in Dokan Lake, Kurdistan region of Iraq. ZANCO Journal of Pure and Applied Sciences, 31, 57-64.
Uslu, L., Içik, O., Koç, K. and Göksan, T. 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina Platensis . African Journal of Biotechnology, 10, 386-389.
Verma, E., Singh, S. and Mishra, A. 2019. Salinity-induced oxidative stress-mediated change in fatty acids composition of cyanobacterium Synechococcus sp. PCC7942. International Journal of Environmental Science, 16, 875-886.
Waghmare, A. G., Salve, M. K., LeBlanc, J. G. and Arya, S. S. 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources Bioprocessing, 3, 16.
Wang, G., Chen, L., Hao, Z., Li, X. and Liu, Y. 2011. Effects of salinity stress on the photosynthesis of Wolffia arrhiza as probed by the OJIP test. Fresenius environmental bulletin, 20, 432-438.
Wang, G., Hao, Z., Anken, R. H., Lu, J. and Liu, Y. 2010. Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients. Advances in Space Research, 45, 839-845.
Wang, Y., Li, Y., Luo, X. and Gao, H. 2018. Effects of yttrium and phosphorus on growth and physiological characteristics of Microcystis aeruginosa. Journal of Rare Earths, 36, 781-788.
Xin, L., Hong-Ying, H., Ke, G. and Ying-Xue, S. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource technology, 101, 5494-5500.
Yang, L., Chen, J., Qin, S., Zeng, M., Jiang, Y., Hu, L., Xiao, P., Hao, W., Hu, Z. and Lei, A. 2018. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnology for biofuels, 11, 40.
Yeesang, C. and Cheirsilp, B. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource technology, 102, 3034-3040.
Zarrouk, C. J. 1966. Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph.D., University of Paris, Paris.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Khalifa S.H. Eldiehy , Mustafa A. Fawzy , Mohammed Rawway , Usama M. Abdul-Raouf

This work is licensed under a Creative Commons Attribution 4.0 International License.