Optical Analysis of 1300 nm GaInNAsSb/GaAs Vertical Cavity Semiconductor Optical Amplifier
DOI:
https://doi.org/10.21271/ZJPAS.32.2.9Keywords:
Vertical cavity semiconductor optical amplifier (VCSOA), distributed Bragg reflectors (DBRs), quantum wells (QWs), gain, amplifier bandwidth, mirror reflectivity.Abstract
Vertical cavity semiconductor optical amplifiers (VCSOAs) based on GaInNAsSb active region is designed to operate in reflection mode at wavelength of 1300 nm. Addition of antimony Sb to the GaInNAs has dramatically improve the performance of VCSOAs, where the wavelength shifts to longer wavelength. This study is aimed to design GaInNAsSb/GaAs quantum wells (QWs) enclosed between various periods of front and 25-periods of back of AlGaAs/GaAs distributed Bragg mirrors (DBRs) by using MATLAB. GaInNAsSb can be grown and lattice matched to GaAs with a very small band gap and it can be grown monolithically on high quality GaAs/AlGaAs distributed Bragg reflector. Peak reflection gain at around of 53.2 dB at single pass gain of 1.076 is observed. In addition, amplifier bandwidth at various front back mirrors reflectivities is simulated to achieve high gain and wide optical bandwidth at low reflectivity of front mirrors.
References
Adams, M. J., Collins, J. V., Henning, I. D. 1985. Analysis of semiconductor laser optical amplifiers, Proc. IEE, 132 (1), 58-63.
Aho, A., Korpijärvi, V-M., Isoaho, R., Malinen, P., Tukiainen, A., Honkanen, and M., Guina, M. 2016. Determination of composition and energy gaps of GaInNAsSb layers grown by MBE. Journal of Crystal Growth, 438, 49-54.
Bjorlin, E. S. 2002. Long-wavelength vertical-cavity semiconductor optical amplifiers, In Semiconductor Lasers and Optical Amplifiers for Lightwave Communication Systems, 35-47. International Society for Optics and Photonics.
Bjorlin, E. S., and Bowers, J. E. 2002. Noise figure of vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 38 (1), 61-66.
Bjorlin, E. S., Kimura, T., and Bowers, J. E. 2003. Carrier-confined vertical-cavity semiconductor optical amplifiers for higher gain and efficiency, IEEE journal of selected topics in quantum electronics, 9 (5), 1374-85.
Bjorlin, E. S., Riou. B, Abraham, P., Piprek, J., Chiu Y-Y, Black, K. A., Keating, A., and Bowers, J. E. 2001. Long wavelength vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 37 (2), 274-81.
Braza, V., Reyes, D. F., Gonzalo, A., Utrilla, A. D., Ben, T., Ulloa, J. M., and González, D. 2017. Sb and N Incorporation Interplay in GaAsSbN/GaAs Epilayers near Lattice-Matching Condition for 1.0-1.16-eV Photonic Applications, Nanoscale Research Letters, 356 (12) 1-10.
Chaqmaqchee, F. A. 2015. Optical Amplification in Dilute Nitride Hot Electron Light Emission–VCSOAs Devices, Arabian Journal for Science and Engineering, 40 (7), 2111-2115.
Chaqmaqchee, F. A. 2019. Performance Characteristics of Conventional Vertical Cavity Surface Emitting Lasers VCSELs at 1300 nm, ZANCO Journal of Pure and Applied Sciences, 2 (31), 14-18.
Chaqmaqchee, F. A. 2016. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems, ARO-The Scientific Journal of Koya University, 4 (1), 8-12.
Chaqmaqchee, F. A. I. and Balkan, N. 2012. Gain studies of 1.3-mum dilute nitride HELLISH-VCSOA for optical communications. Nanoscale Res Lett., 7(1), 526-529.
Chaqmaqchee, F. A. I. and Balkan, N. 2014. Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm. Nanoscale Res Lett., 9 (1), 1-5.
Coldren, L. A, Corzine, S. W. 1995. Diode lasers and photonic integrated circuits, New York, Wiley.
Cole, G. D., Bjorlin, E. S., Chen, Q., Chan, C.-Y., Wu, S., Wang, C. S., MacDonald, N. C., and Bowers, J. E. 2005. MEMS-tunable vertical-cavity SOAs, IEEE journal of quantum electronics, 41 (3), 390-407.
Connely, M. J. 2002. Semicondctor optical amplifiers, New York, Kluwer acadamic publishers.
Gambin, V., Ha, W., Wistey, M., Yuen, H., Bank, S.R, Kim, S. M. and Harris Jr, J. S. 2002. GaInNAsSb for 1.3-1.6 m long wavelength lasers grown by molecular beam epitaxy, IEEE J. Sel. Topics Quantum Electron, 8 (4), 795-800.
Haghighi, N., Rosales, R., Larisch, G., Marcin, G., Frasunkiewicz, L., Czyszanowski, T., and Lott, J. A. 2018. Simplicity VCSELs, Proc. SPIE, 10552, 1-9.
Harris Jr, J. S. 2005. The opportunities, successes and challenges for GaInNAsSb, Journal of crystal growth, 278 (1), 3-17.
Ilroy, P. M., Kurobe, A., and Uematsu, Y. 1985. Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers, IEEE J. Quantum Electron., 21 (12), 1958-1963.
Karim, A., Bjorlin, S., Piprek, J., and Bowers, J. E. 2000. Long-wavelength vertical-cavity lasers and amplifiers, IEEE journal of selected topics in quantum electronics, 6 (6), 1244-53.
Karim, M. R., Rahman, M. A., Akhtar, J., and Reja, M. I. Design and performance analysis of GaInNAsSb/GaAs MQW VCSEL operating at 1550 nm. 2017. IEEE, 3rd International Conference on Electrical Information and Communication Technology (EICT).
Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M.C, Nakahara, K., Yazawa, Y., Okai M., and Uomi, K. 1997. GaInNAs: a novel material for long-wavelength semiconductor lasers, IEEE journal of selected topics in quantum electronics, 3 (3), 719-30.
Koyama, F., Kubota, S., and Iga, K. 1991. GaAlAs/GaAs active filter based on vertical cavity surface emitting laser, Electronics Letters, 27 (12), 1093-95.
Laurand, N., Calvez, S., Dawson, M. D., Bryce, A. C. and Jouhti, T. 2005. Performance comparison of GaInNAs vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 41 (5), 642-49.
Li, B. J. and Chua, S. J. 2010, “Optical switches: matarial and design”, Woodhead Publishing series in electroinc and optical materials, UK, pp. 158-180.
Lisesivdin, S. B., Khan, N. A., Mazzucato, S., Balkan, N., Adams, M. J., Korpijärvi, V-M., Guina, M., Mezosi, G., and Sorel, M. 2014. Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs, Nanoscale Res Lett., 9 (1), 1-5.
Liu, A., Wolf, P., Lott, J. A. and Bimberg, D. 2019. Vertical-cavity surface-emitting lasers for data communication and sensing, Photonics Research, 7 (2), 121-136.
Pankove, J. I., Miller, E. A. and Berkeyheiser, J. E. 1972. GaN blue light-emitting diodes, Journal of Luminescence, 5 (1), 84-86.
Piprek, J., Björlin, E.S. and Bowers, J. E. 2001. Optical gain-bandwidth product of vertical-cavity laser amplifiers, Electronics Letters, 37 (5), 298-299.
Piprek, J., Bjorlin, S. and Bowers, J. E. 2001. Design and analysis of vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 37 (1), 127-134.
Rahman, M. A., Karim, M. R., Akhtar, J., Reja, M. I. 2018. Performance Characterization of a GaAs Based 1550 nm Ga0.591In0.409N0.028As0.89Sb0.08 MQW VCSEL, International Journal of Photonics and Optical Technology, 4 (1), 14-18.
Soda, H., Iga, K.-i., Kitahara, C., and Suematsu, Y. 1979. GaInAsP/InP surface emitting injection lasers, Japanese Journal of Applied Physics, 18 (12), 2329.
Song, D., Gauss, V., Zhang, H., Gross, M., Wen, P., and Esener, S. 2007. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers, Optics letters, 32 (20), 2969-2971.
Spiewak, P., Gebski, M., Haghighi, N., Rosales, R., Komar, P., Walczak, J., Wieckowska, M, Sarzala, R.P., Lott, J.A., and Wasiak, M. 2018. Impact of the top DBR in GaAs-based VCSELs on the
threshold current and the cavity photon lifetime. SPIE Proceedings, 10552.
Wistey, M. A., Bank, S. R., Bae, H. P., Yuen, H. B., Pickett, E. R., Goddard, L. L., and Harris, J. S. 2006. GaInNAsSb/GaAs vertical cavity surface emitting lasers at 1534nm, Electronics Letters, 42 (5), 282-283.
Yang, X., Jurkovic, M. J., Heroux, J. B., and Wang, W. I. 1999. Molecular beam epitaxial growth of InGaAsN: Sb/GaAs quantum wells for long-wavelength semiconductor lasers, Applied Physics Letters, 75 (2), 178-180.
Yuen, H. B., Bank, S. R., Bae, H., Wistey, M. A, and Harris Jr, J. S. 2006. The role of antimony on properties of widely varying GaInNAsSb compositions, Journal of Applied Physics, 99 (9), 093504.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Faten Adel Ismael Chaqmaqchee, Shawbo Abdulsamad Abubekr Salh, Mohammed Faeq Mohammed Sabri
This work is licensed under a Creative Commons Attribution 4.0 International License.