The major pathways of lipids (triglyceride and cholesterol) and lipoprotein metabolism

Authors

  • Karzan Jalal Salih Pharmaceutical Chemistry Department, Medical and Applied Science College, Charmo University, 46023 Chamchamal‐Sulaimani, Kurdistan Region, Iraq.

DOI:

https://doi.org/10.21271/ZJPAS.33.4.6

Keywords:

Triglyceride, Fatty acid β-oxidation, Cholesterol, Chylomicron, HDL, LDL, VLDL.

Abstract

Lipids are considered as organic substances that are relatively insoluble in water while soluble in organic solvents such as alcohol and ether. Unlike carbohydrates, proteins and nucleic acids, lipids are not polymers. Further, lipids are mostly small molecules. More than 90% of the fatty acids found in plasma are in the form of fatty acid esters primarily in the form of triacylglycerol, cholesteryl esters. Lipids can be exogenously from the dietary sources and endogenously mainly from the liver. Due to insolubility of lipids, so the circulation of lipids in the blood is performed by the actions of several transport vehicles such as spherical protein complexes which is known as lipoproteins which is an assembly of lipids with proteins. There are four major types of lipoproteins are participating in transporting lipids in plasma, which are classified based on their density, these includes chylomicrons (CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Different types of lipoproteins have a different set of proteins (apoprotein) on their surface, these proteins served as address tags that determine both destination and function of each lipoprotein. In this review, we summarise the pathways and metabolites that involve in lipid and lipoprotein metabolism.

References

ABU-FARHA, M., THANARAJ, T. A., QADDOUMI, M. G., HASHEM, A., ABUBAKER, J. & AL-MULLA, F. 2020. The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. Int J Mol Sci, 21.

ALVAREZ, H., STEINBÜCHEL, A. J. A. M. & BIOTECHNOLOGY 2002. Triacylglycerols in prokaryotic microorganisms. 60, 367-376.

ALVES-BEZERRA, M. & COHEN, D. E. 2017. Triglyceride Metabolism in the Liver. Compr Physiol, 8, 1-8.

BLOCH, K. 1965. The biological synthesis of cholesterol.

BOCHEM, A. E., HOLLEBOOM, A. G., ROMIJN, J. A., HOEKSTRA, M., DALLINGA, G. M., MOTAZACKER, M. M., HOVINGH, G. K., KUIVENHOVEN, J. A. & STROES, E. S. 2014. Adrenal Function in females with low plasma HDL-C due to mutations in ABCA1 and LCAT. PLoS One, 9, e90967.

BODEN, G. 2008. Obesity and Free Fatty Acids. Endocrinology and Metabolism Clinics of North America, 37, 635-646.

BODEN, G., JADALI, F., WHITE, J., LIANG, Y., MOZZOLI, M., CHEN, X., COLEMAN, E. & SMITH, C. 1991. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest, 88, 960-6.

CARSON, J. A. S., LICHTENSTEIN, A. H., ANDERSON, C. A. M., APPEL, L. J., KRIS-ETHERTON, P. M., MEYER, K. A., PETERSEN, K., POLONSKY, T., VAN HORN, L., AMERICAN HEART ASSOCIATION NUTRITION COMMITTEE OF THE COUNCIL ON, L., CARDIOMETABOLIC, H., COUNCIL ON ARTERIOSCLEROSIS, T., VASCULAR, B., COUNCIL ON, C., STROKE, N., COUNCIL ON CLINICAL, C., COUNCIL ON PERIPHERAL VASCULAR, D. & STROKE, C. 2020. Dietary Cholesterol and Cardiovascular Risk: A Science Advisory From the American Heart Association. Circulation, 141, e39-e53.

CERQUEIRA, N. M., OLIVEIRA, E. F., GESTO, D. S., SANTOS-MARTINS, D., MOREIRA, C. T., MOORTHY, H. N., RAMOS, M. J. & FERNANDES, P. J. B. 2016. Cholesterol biosynthesis: a mechanistic overview. 55, 5483-5506.

CHATTERJEE, C. & SPARKS, D. L. 2011. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. Am J Pathol, 178, 1429-33.

COOPER, A. D. 1997. Hepatic uptake of chylomicron remnants. Journal of Lipid Research, 38, 2173-2192.

COURCHESNE-LOYER, A., LOWRY, C.-M., ST-PIERRE, V., VANDENBERGHE, C., FORTIER, M., CASTELLANO, C.-A., WAGNER, J. R. & CUNNANE, S. C. J. C. D. I. N. 2017. Emulsification increases the acute ketogenic effect and bioavailability of medium-chain triglycerides in humans: protein, carbohydrate, and fat metabolism. 1, e000851.

DAWSON, P. A., LAN, T. & RAO, A. 2009. Bile acid transporters. J Lipid Res, 50, 2340-57.

DAWSON, P. A. J. P. O. T. G. T. 2018. Bile formation and the enterohepatic circulation. 931-956.

DEBOSE-BOYD, R. A. 2008. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res, 18, 609-21.

DI CIAULA, A., GARRUTI, G., LUNARDI BACCETTO, R., MOLINA-MOLINA, E., BONFRATE, L., WANG, D. Q. H. & PORTINCASA, P. 2017. Bile Acid Physiology. Annals of Hepatology, 16, S4-S14.

DIEUAIDE, M., BROUQUISSE, R., PRADET, A. & RAYMOND, P. 1992. Increased Fatty Acid β-Oxidation after Glucose Starvation in Maize Root Tips. 99, 595-600.

DIXON, J. B. 2010. Mechanisms of chylomicron uptake into lacteals. Ann N Y Acad Sci, 1207 Suppl 1, E52-7.

DONNELLY, K. L., SMITH, C. I., SCHWARZENBERG, S. J., JESSURUN, J., BOLDT, M. D. & PARKS, E. J. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest, 115, 1343-51.

DRIVER, T., TRIVEDI, D. K., MCINTOSH, O. A., DEAN, A. P., GOODACRE, R. & PITTMAN, J. K. 2017. Two Glycerol-3-Phosphate Dehydrogenases from Chlamydomonas Have Distinct Roles in Lipid Metabolism. Plant Physiol, 174, 2083-2097.

FAHY, E., COTTER, D., SUD, M. & SUBRAMANIAM, S. 2011. Lipid classification, structures and tools. Biochim Biophys Acta, 1811, 637-47.

FEINGOLD, K. R. & GRUNFELD, C. 2015. Introduction to lipids and lipoproteins.

FREEMAN, M. W. & WALFORD, G. A. 2016. Chapter 41 - Lipoprotein Metabolism and the Treatment of Lipid Disorders. In: JAMESON, J. L., DE GROOT, L. J., DE KRETSER, D. M., GIUDICE, L. C., GROSSMAN, A. B., MELMED, S., POTTS, J. T. & WEIR, G. C. (eds.) Endocrinology: Adult and Pediatric (Seventh Edition). Philadelphia: W.B. Saunders.

GB, R., MSAM, N. & PM, S. 2018. A Review on Anti-Cholesterol Drugs and their Mechanisms. Journal of Medicinal Chemistry and Drug Design, 1.

GERARD, P. 2013. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens, 3, 14-24.

GOEPFERT, S. & POIRIER, Y. 2007. Beta-oxidation in fatty acid degradation and beyond. Curr Opin Plant Biol, 10, 245-51.

GOLDBERG, I. J. J. J. O. L. R. 1996. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. 37, 693-707.

GOODFRIEND, T. L., EGAN, B., STEPNIAKOWSKI, K. & BALL, D. L. 1995. Relationships Among Plasma Aldosterone, High-Density Lipoprotein Cholesterol, and Insulin in Humans. Hypertension, 25, 30-36.

HALL, Z., CHIARUGI, D., CHARIDEMOU, E., LESLIE, J., SCOTT, E., PELLEGRINET, L., ALLISON, M., MOCCIARO, G., ANSTEE, Q. M. & EVAN, G. I. J. H. 2020. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma.

HAMPTON, R., DIMSTER-DENK, D. & RINE, J. J. T. I. B. S. 1996. The biology of HMG-CoA reductase: the pros of contra-regulation. 21, 140-145.

HANNICH, M., WALLASCHOFSKI, H., NAUCK, M., REINCKE, M., ADOLF, C., VOLZKE, H., RETTIG, R. & HANNEMANN, A. 2018. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population. Int J Endocrinol, 2018, 4128174.

HARAYAMA, T. & RIEZMAN, H. J. N. R. M. C. B. 2018. Understanding the diversity of membrane lipid composition. 19, 281.

HAVEL, R. J., FIELDING, C. J., OLIVECRONA, T., SHORE, V. G., FIELDING, P. E. & EGELRUD, T. J. B. 1973. Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoprotein lipase from different sources. 12, 1828-1833.

HAZZARD, W. R., KUSHWAHA, R. S., APPLEBAUM-BOWDEN, D., HAFFNER, S. M., STEINMETZ, A. & FOSTER, D. M. J. M. 1984. Chylomicron and very low-density lipoprotein apolipoprotein B metabolism: Mechanism of the response to stanozolol in a patient with severe hypertriglyceridemia. 33, 873-881.

HEGELE, R. A. J. N. R. G. 2009. Plasma lipoproteins: genetic influences and clinical implications. 10, 109-121.

HOFMANN, A. F., HAGEY, L. J. C. & SCIENCES, M. L. 2008. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. 65, 2461-2483.

HOKANSON, J. E. & AUSTIN, M. A. J. J. O. C. R. 1996. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a metaanalysis of population-based prospective studies. 3, 213-219.

HOUTEN, S. M. & WANDERS, R. J. 2010. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis, 33, 469-77.

HUANG, Y. & MAHLEY, R. W. 2014. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis, 72 Pt A, 3-12.

IKONEN, E. 2008a. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol, 9, 125-38.

IKONEN, E. J. N. R. M. C. B. 2008b. Cellular cholesterol trafficking and compartmentalization. 9, 125-138.

JAWORSKI, K., SARKADI-NAGY, E., DUNCAN, R. E., AHMADIAN, M. & SUL, H. S. 2007. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol, 293, G1-4.

JENSEN, M. D. J. J. O. T. R. S. O. M. 2002. Adipose tissue and fatty acid metabolism in humans. 95, 3.

KARPE, F., BELL, M., BJÖRKEGREN, J., HAMSTEN, A. J. A., THROMBOSIS, & BIOLOGY, V. 1995. Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. 15, 199-207.

KING, A., YANG, Q., HUESMAN, S., RIDER, T. & LO, C. C. 2015. Lipid transport in cholecystokinin knockout mice. Physiol Behav, 151, 198-206.

KISS, L., FUR, G., MATRAI, P., HEGYI, P., IVANY, E., CAZACU, I. M., SZABO, I., HABON, T., ALIZADEH, H., GYONGYI, Z., VIGH, E., EROSS, B., EROS, A., OTTOFFY, M., CZAKO, L. & RAKONCZAY, Z., JR. 2018. The effect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Sci Rep, 8, 14096.

KOHAN, A. B., WANG, F., LO, C. M., LIU, M. & TSO, P. 2015. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol, 308, G472-81.

LAMBERT, J. E., PARKS, E. J. J. B. E. B. A.-M. & LIPIDS, C. B. O. 2012. Postprandial metabolism of meal triglyceride in humans. 1821, 721-726.

LENT-SCHOCHET, D. & JIALAL, I. J. S. 2020. Biochemistry, lipoprotein metabolism.

LI, T. & CHIANG, J. Y. 2009. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res, 2009, 501739.

LI, T. & CHIANG, J. Y. 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev, 66, 948-83.

LIDDLE, R. A., GOLDFINE, I. D., ROSEN, M. S., TAPLITZ, R. & WILLIAMS, J. J. T. J. O. C. I. 1985. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. 75, 1144-1152.

LILLIS, A. P., VAN DUYN, L. B., MURPHY-ULLRICH, J. E. & STRICKLAND, D. K. 2008. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev, 88, 887-918.

LIZARDO, D. Y., PARISI, L. R., LI, N. & ATILLA-GOKCUMEN, G. E. J. B. 2018. Noncanonical roles of lipids in different cellular fates. 57, 22-29.

LO, C.-M., NORDSKOG, B. K., NAULI, A. M., ZHENG, S., VONLEHMDEN, S. B., YANG, Q., LEE, D., SWIFT, L. L., DAVIDSON, N. O., TSO, P. J. A. J. O. P.-G. & PHYSIOLOGY, L. 2008. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? 294, G344-G352.

LO, C. C. & COSCHIGANO, K. T. 2020. ApoB48 as an Efficient Regulator of Intestinal Lipid Transport. Front Physiol, 11, 796.

LONGO, N., AMAT DI SAN FILIPPO, C. & PASQUALI, M. 2006. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet, 142C, 77-85.

LORIZATE, M. & KRAUSSLICH, H. G. 2011. Role of lipids in virus replication. Cold Spring Harb Perspect Biol, 3, a004820.

LOWE, M. E. J. J. O. L. R. 2002. The triglyceride lipases of the pancreas. 43, 2007-2016.

LYU, J., YANG, E. J. & SHIM, J. S. 2019. Cholesterol Trafficking: An Emerging Therapeutic Target for Angiogenesis and Cancer. Cells, 8.

MANDAL, M. K., CHANDA, B., XIA, Y., YU, K., SEKINE, K. T., GAO, Q. M., SELOTE, D., KACHROO, A. & KACHROO, P. 2011. Glycerol-3-phosphate and systemic immunity. Plant Signal Behav, 6, 1871-4.

MATTSON, F. & VOLPENHEIN, R. J. J. O. B. C. 1964. The digestion and absorption of triglycerides. 239, 2772-2777.

MERKEL, M., ECKEL, R. H. & GOLDBERG, I. J. 2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res, 43, 1997-2006.

MODRE-OSPRIAN, R., OSPRIAN, I., TILG, B., SCHREIER, G., WEINBERGER, K. M. & GRABER, A. 2009. Dynamic simulations on the mitochondrial fatty acid beta-oxidation network. BMC Syst Biol, 3, 2.

NESS, G. C., ZHAO, Z. & WIGGINS, L. 1994. Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity by affecting immunoreactive protein levels. Journal of Biological Chemistry, 269, 29168-29172.

NORDESTGAARD, B. G. J. C. R. 2016. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. 118, 547-563.

NOZAKI, S., TANAKA, T., YAMASHITA, S., SOHMIYA, K., YOSHIZUMI, T., OKAMOTO, F., KITAURA, Y., KOTAKE, C., NISHIDA, H., NAKATA, A., NAKAGAWA, T., MATSUMOTO, K., KAMEDA-TAKEMURA, K., TADOKORO, S., KURATA, Y., TOMIYAMA, Y., KAWAMURA, K. & MATSUZAWA, Y. 1999. CD36 mediates long-chain fatty acid transport in human myocardium: complete myocardial accumulation defect of radiolabeled long-chain fatty acid analog in subjects with CD36 deficiency. Mol Cell Biochem, 192, 129-35.

OHKAWA, R., LOW, H., MUKHAMEDOVA, N., FU, Y., LAI, S. J., SASAOKA, M., HARA, A., YAMAZAKI, A., KAMEDA, T., HORIUCHI, Y., MEIKLE, P. J., PERNES, G., LANCASTER, G., DITIATKOVSKI, M., NESTEL, P., VAISMAN, B., SVIRIDOV, D., MURPHY, A., REMALEY, A. T., SVIRIDOV, D. & TOZUKA, M. 2020. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J Lipid Res, 61, 1577-1588.

OLOFSSON, S.-O., WIKLUND, O. & BORÉN, J. 2007. Apolipoproteins A-I and B: biosynthesis, role in the development of atherosclerosis and targets for intervention against cardiovascular disease. Vascular health and risk management, 3, 491-502.

PASQUIER, B., ARMAND, M., CASTELAIN, C., GUILLON, F., BOREL, P., LAFONT, H. & LAIRON, D. J. B. J. 1996. Emulsification and lipolysis of triacylglycerols are altered by viscous soluble dietary fibres in acidic gastric medium in vitro. 314, 269-275.

PAYNE, A. H. & HALES, D. B. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev, 25, 947-70.

PONZ DE LEON, M., MURPHY, G. M. & DOWLING, R. H. 1978. Physiological factors influencing serum bile acid levels. Gut, 19, 32-9.

PRABHU, A. V., LUU, W., SHARPE, L. J. & BROWN, A. J. J. J. O. B. C. 2016. Cholesterol-mediated degradation of 7-dehydrocholesterol reductase switches the balance from cholesterol to vitamin D synthesis. 291, 8363-8373.

ROHRL, C. & STANGL, H. 2018. Cholesterol metabolism-physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wien Med Wochenschr, 168, 280-285.

ROSENFELD, M. E., PALINSKI, W., YLÄ-HERTTUALA, S. & CAREW, T. E. J. T. P. 1990. Macrophages, endothelial cells, and lipoprotein oxidation in the pathogenesis of atherosclerosis. 18, 560-571.

RUSSELL, D. W. & SETCHELL, K. D. J. B. 1992. Bile acid biosynthesis. 31, 4737-4749.

RUSSELL, D. W. J. C. D. & THERAPY 1992. Cholesterol biosynthesis and metabolism. 6, 103-110.

SHAND, J. H. & WEST, D. W. 1995. The effects of simvastatin and cholestyramine, alone and in combination, on hepatic cholesterol metabolism in the male rat. Lipids, 30, 917-926.

SHRESTHA, S., WU, B. J., GUINEY, L., BARTER, P. J. & RYE, K. A. 2018. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res, 59, 772-783.

STRUTHERS, A. D. & MACDONALD, T. M. J. C. R. 2004. Review of aldosterone-and angiotensin II-induced target organ damage and prevention. 61, 663-670.

TABAS, I. 2002. Cholesterol in health and disease. J Clin Invest, 110, 583-90.

TASKINEN, M. R., BJORNSON, E., KAHRI, J., SODERLUND, S., MATIKAINEN, N., PORTHAN, K., AINOLA, M., HAKKARAINEN, A., LUNDBOM, N., FERMANELLI, V., FUCHS, J., THORSELL, A., KRONENBERG, F., ANDERSSON, L., ADIELS, M., PACKARD, C. J. & BOREN, J. 2020. Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes. Arterioscler Thromb Vasc Biol, ATVBAHA120315446.

TEIXEIRA, G. R., MENDES, L. O., VERAS, A. S. C., THORPE, H. H. A., FÁVARO, W. J., DE ALMEIDA CHUFFA, L. G., PINHEIRO, P. F. F., MARTINEZ, F. E. J. L. I. H. & DISEASE 2020. Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate. 19, 1-9.

TOPRAK, U. J. F. I. P. 2020. The role of peptide hormones in insect lipid metabolism. 11.

TSAI, J. H., CHI, M. M., SCHULTE, M. B. & MOLEY, K. H. 2014. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice. Biol Reprod, 90, 34.

TYOR, M. P., GARBUTT, J. T. & LACK, L. J. T. A. J. O. M. 1971. Metabolism and transport of bile salts in the intestine. 51, 614-626.

VAN EUNEN, K., SIMONS, S. M., GERDING, A., BLEEKER, A., DEN BESTEN, G., TOUW, C. M., HOUTEN, S. M., GROEN, B. K., KRAB, K., REIJNGOUD, D. J. & BAKKER, B. M. 2013. Biochemical competition makes fatty-acid beta-oxidation vulnerable to substrate overload. PLoS Comput Biol, 9, e1003186.

WANG, H. H., GARRUTI, G., LIU, M., PORTINCASA, P. & WANG, D. Q. H. 2017. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Annals of Hepatology, 16, S27-S42.

WANG, X., MAGKOS, F. & MITTENDORFER, B. 2011. Sex differences in lipid and lipoprotein metabolism: it's not just about sex hormones. J Clin Endocrinol Metab, 96, 885-93.

WANG, X. & PAIGEN, B. 2005. Genetics of variation in HDL cholesterol in humans and mice. Circ Res, 96, 27-42.

WARNICK, G. R., KNOPP, R. H., FITZPATRICK, V. & BRANSON, L. 1990. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin Chem, 36, 15-9.

WEIL, C., LEFÈVRE, F. & BUGEON, J. 2012. Characteristics and metabolism of different adipose tissues in fish. Reviews in Fish Biology and Fisheries, 23, 157-173.

WEN, Y. & LEAKE, D. S. 2007. Low density lipoprotein undergoes oxidation within lysosomes in cells. Circ Res, 100, 1337-43.

XIAO, C., HSIEH, J., ADELI, K. & LEWIS, G. F. 2011. Gut-liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab, 301, E429-46.

XU, Y., DU, X., TURNER, N., BROWN, A. J. & YANG, H. 2019. Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. J Biol Chem, 294, 19306-19321.

YADAV, D. & LOWENFELS, A. B. J. G. 2013. The epidemiology of pancreatitis and pancreatic cancer. 144, 1252-1261.

YVAN-CHARVET, L., WANG, N. & TALL, A. R. 2010. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol, 30, 139-43.

ZHANG, L., KEUNG, W., SAMOKHVALOV, V., WANG, W. & LOPASCHUK, G. D. 2010. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta, 1801, 1-22.

Published

2021-08-18

How to Cite

Karzan Jalal Salih. (2021). The major pathways of lipids (triglyceride and cholesterol) and lipoprotein metabolism . Zanco Journal of Pure and Applied Sciences, 33(4), 61–72. https://doi.org/10.21271/ZJPAS.33.4.6