Properties of Electron Swarm Parameters in Tetrahydrofuran


  • muhammed M. Othman Department of Physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq



THF, swarm parameters, cross sections, kinetics, electron Boltzmann equation.


Reported electron collision cross sections data in the energy range ~ 0 to 300 eV     from gaseous biomolecule Tetrahydrofuran (THF) have been used to calculate the electron energy distribution function (EEDF) and swarm parameters for electrically excited of THF, using a two-term solution of the Boltzmann equation. The electron swarm parameters namely (mean energy, drift velocity, diffusion coefficient, electron mobility, characteristic energy, attachment and ionization coefficient), at room temperature and atmospheric pressure are presented over a wide range of applied electric field strength E/N (E is the electric field and N is the gas number density) varying from 0.1 Td to 1000 Td (1Td = 10-17 Vcm2). The EEDF found to be non-Maxwellian. The electron swarm parameters are compared with those calculated using multi term kinetic theory and experimentally using the pulsed Townsend technique. The influence of inelastic cross section on the calculated transport parameters is also explained.


Abdoul-Carime, H., Gohlke, S., and IIIenberger, E., (2004). Site-specific diiociation of DNA bases by slow electrons at early stages of irradiation, Phys. Rev. Lett., 92(16), 168103 (4pp).

Bug, M.U., Yong Baek, W., Rabus, H., Villagrasa, C., Meylan, S., and Rosenfeld, A. B. (2017). An electron-impact cross section data set (10 eV – 1 keV) of DNA constituents based on consistent experimental data: a requisite for Monte Carlo simulations, Radiat. Phys. Chem., 130, pp. 459–479.

Casey, M. J. E., de Urquijo, J., Serkovic Loli, L. N., Cocks, D. G., Boyle, G. J., Jones, D. B., Brunger, M. J., and White, R. D. (2017) . Self-consistency of electron-THF cross sections using electron swarm techniques, J.Chem. Phys., 147(19), 195103 (16pp).

Cherry, S. R., Sorosen, J. A., and Phelps, M. E. (2003), Physics in nuclear medicine, Sounders, Philaddphia.

Dampc, M., Szyma´nska, E., Mielewska, B. and Zubek, M. (2011). Ionization and ionic fragmentation of tetrahydrofuran molecules by electron collisions, J. Phys. B: At. Mol. Opt. Phys., 44(5) 055206 (7pp).

Deng, Y., and Xiao, D. (2014). Analysis of the insulation characteristics of CF3I gas mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann equation method, Japanese Journal of Applied Physics, 53(9), 096201 (7pp).

de Urquijo, J., Casey, M. J. E., Serkovic-Loli, L. N., Cocks, D. G., Boyle, G. J., Jones, D. B., Brunger, M. J. and White, R. D. (2019). J. Chem. Phys., 151(5), 054309 (17pp).

Do, T. P. T., Leung, M., Fuss, M., Garcia, G., Blanco, F., Ratnavelu, K., and Brunger, M. J. (2011). Excitation of electronic states in tetrahydrofuran by electron impact, J. Chem. Phys., 134(14), 144302 (8pp).

Duque, H. V., Do, T. P. T., Lopes, M. C. A., Konovalov, D. A., White, R. D., Brunger, M. J. and Jones, D. B. (2015). The role of electron-impact vibrational excitation in electron transport through gaseous tetrahydrofuran, J. Chem. Phys., 142, 124307 (7pp).

Elahe Alizadeh, Thomas, M. Orlando, and Leon Sanche, (2015). Biomolecular damage induced by ionizing radiation: The direct and indirect effects of low-energy electrons on DNA, Annu. Rev. Phys. Chem., 66(1), 379-398.

Engelhardt, A., and Phelps, A. (1964). Transport coefficients and cross sections in Argon and Hydrogen-Argon mixtures, Phys. Rev.A, 133(2), pp. 375-380.

Engelhardt, A., and Phelps, A., and Risk, C. G. (1964). Determination of momentum transfer and inelastic collision cross sections for electrons in nitrogen using transport coefficients, Phys. Rev.A, 135(6), pp. 1566-1574.

Frost, L. S., and Phelps, A. V. (1962). Rotational excitation and momentum transfer cross Sections for electrons in H2 and N2 from transport coefficients, Phys. Rev., 127(5), pp. 1621-1633.

Fuss, M., Muñoz, A., Oller, J. C., Blanco, F., Almeida, D., Lim˜ao-Vieira, P., Do, T. P. D., Brunger, M. J. and Garc´ıa, G. (2009). Electron-scattering cross sections for collisions with tetrahydrofuran from 50 to 5000 eV, Phys.Rev. A 80(5), 052709 (6pp).

Fuss, M. C., Sanz, A. G., Blanco, F., Lim˜ao-Vieira, P., Brunger, M. J., and Garc´ıa, G. (2014). Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1–10 000 eV Eur. Phys. J. D, 68(6), 161 (6pp).

Garland, N. A., Brunger, M. J., Garcia, G., de Urquijo, J., and White, R. D. (2013). Transport properties of electron swarms in tetrahydrofuran under the influence

of an applied electric field, Phys. Rev. A, 88(6), 062712 (10pp).

Hangelaar, G. J. M. and Pichford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol., 14(4), pp. 722-733.

Hall, E. J., and Giaccia, A. J. (2018). Radiobiology for the Radiologist, 8ed, Philadephia: Lippincott Williams and Wikins.

Huxley, L. G. H., and Crompton, R. W. (1974).The diffusion and drift of electrons in gases, Wiley, New York.

Itikawa, Y. (2007). Molecular processes in plasma, Tokyo, Japan.

Láska, L., Mašek, K., Krása, J., and Peřina, V. (1984). Dielectric properties of SF6 mixtures containing oxygen and other gases. Czechoslovak Journal of Physics B, 34(10), pp: 1038-1047.

Lucas, J., Price, D., and Moruzzi, J. (1973). The calculation of electron energy distributions and attachment coefficient for electron swarms in oxygen. Journal of Physics D: Applied Physics, 6(12), pp. 1503-1513.

Martin, Frédéric; Burrow, Paul D.; Cai, Zhongli; Cloutier, Pierre; Hunting, Darel; Sanche, Léon, (2004). DNA strand breaks induced by 0-4 eV electrons: The role of shape resonances, Phys. Rev. Lett., 93(6), 068101 (4pp).

Mitchell, A. C. G. and Zemansky, M. W. (1971). Resonance Radiation and Excited Atoms, Cambridge University Press, New York, PP. 94.

Morgan, W., and Penetrante, B. (1990). ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas. Computer Physics Communications, 58(1-2), pp. 127-152.

Mo˙zejko, P., and Sanche, L. (2005). Cross sections for electron scattering from selected components of DNA and RNA, Radiat. Phys. Chem. 73(2), 77–84.

Muñoz, A., Blanco, F., Garcia, G., Thorn, P. A., Brunger, M. J., Sullivan, J. P.,and Buckman, S. J. (2008). Single electron tracks in water vapour for energies below 100 eV, International Journal of Mass Spectrometry, 277(1-3), pp. 175-179.

Nakamura, Y., and Lucas, J. 1978. Electron drift velocity and momentum cross-section in mercury, sodium and thallium vapours. II. Theoretical. Journal of Physics D: Applied Physics, 11(3), pp: 337-345.

Nighan, W. L. (1970). Electron Energy Distributions and Collision Rates in Electrically Excited N2, CO, and CO2. Physical Review A, 2(5), pp. 1989-2000.

Othman, M. M., Salih, I. H. and Taha, S. A. (2020). Electron transport properties in tetramethylsilane vapour, Solid State Technology, 63(6), pp. 10188-10200.

Othman, M. M., Taha, S. A., and Sailh, I. H. (2019). Solving of the Boltzmann transport equation using two-term approximation for pure electronegative gases (SF6, CCl2F2). ZANCO Journal of Pure and Applied Sciences, 31(s4), pp. 7-25.

Pan, X., and Sanche, L. (2005). Mechanism and site of attack for direct damage to DNA by low energy electron, Phys. Rev. Lett., 94(19), 198104 ( 4pp).

Ptasinska, S., Denifls, S., Scheier, P., and Mark, T. D. (2004). Inelastic electron interaction (attachment/ionization) with deoxyribose, J. Chem. Phys., 120(18), pp. 8505-8511.

Rockwood, S. D, and Greene, A. E. (1980). Numerical solutions of the Boltzmann transport equation, Comput. Phys.Commun., 19(3), pp. 377-393.

Šaši´c, O., Dupljanin, S., de Urquijo, J., and Petrovi´c, Z. L. (2013). Scattering cross sections for electrons in C2H2 F4 and its mixtures with Ar from measured transport coefficients, J. Phys. D: Appl. Phys., 46(32), 325201 (7pp).

Stokes, P. W., Casey, M. J. E., Cocks, D. J., de Urquijo, J., Garc´ıa, G., Brungerand, M. J., and White, R. D. (2020). Self-consistent electron–THF cross sections derived using data-driven swarm analysis with a neural network model, Plasma Sources Sci. Technol., 29 (11), 105008 (10pp).

Swadia, M., Thakar, Y., Vinodkumar, M., and Limbachiya, C. (2017). Theoretical electron impact total cross sections for tetrahydrofuran (C4H8O) Eur. Phys. J. D, 71(4), 85 (5pp).

Swadia, M., Bhavsar, R., Thakar, Y., Vinodkumar, M., and Limbachiya, C. (2017a). Electron-driven processes for furan, tetrahydrofuran and 2, 5-dimethylfuran, Mol. Phys., 115(20), pp. 2521–2527.

Thiemer, B., Andreesen, J. R. and Schraeder, T. (2003). Cloning and characterization of a gene cluster involved in tetrahydrofuran degradation in Pseudonocardia sp. strain K1, Arch. Microbiol., 179(4), pp. 266-277.

Trevisan, C. S., Orel, A. E., and Rescigno, T. N. (2006). Elastic scattering of low-energy electrons by tetrahydrofuran, C S Trevisan1, A E Orel1, J. Phys. B: At. Mol. Opt. Phys., 39 (12), L255–L260.

White, R. D., Brunger, M. J., Garland, N. A., Robson, R. E., Ness, K. F., Garcia, G., de Urquijo, J., Dujko, S., Petrović, Zoran Lj. (2014). Electron swarm transport in THF and water mixtures, Eur. Phys. J. D, 64(5), pp. 125 (6pp).

White, R. D., Tattersall, W., Boyle, G., Robson, R.E., Dujko, S., Petrovic, Z.Lj., Bankovic, A., Brunger, M.J., Sullivan, J.P., Buckman, S.J., and Garcia, G. (2014a). Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance. Applied Radiation and Isotopes, 83 (Part B). pp. 77-85.

White, R. D., Cocks, D., Boyle, G., Casey, M., N Garland, N., Konovalov, D., Philippa, B., Stokes,P., de Urquijo, J., González-Magaña, O., McEachran, R. P., Buckman, S. J., Brunger, M. J., Garcia, G., Dujko, S., and Petrovic, Z Lj. (2018). Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections, Plasma Sources Sci. Technol. 27(5), 053001 (15pp).

Wolff, W., Rudek, B., da Silva, L. A., Hilgers, G., Montenegro, E. C., and Homem, M. G. P. (2019). Absolute ionization and dissociation cross sections of tetrahydrofuran: Fragmentation-ion production mechanisms, J. Chem. Phys., 151(6), 064304 (13pp).





Mathematics ,Physics and Engineering Researches