Effect Gamma-ray on structure and mass attenuation coefficient of Hydroxyapatite Ca10(PO4)6(OH)2, in Bovine Bone
DOI:
https://doi.org/10.21271/ZJPAS.36.4.4Keywords:
Hydroxyapatite; Femur bone and ribs; Gamma irradiation; Mass attenuation coefficients.; NIST XCOMAbstract
Hydrothermal treatment procedures were employed, to generate hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂ ,(HAP) powder, from the femur and ribs of bovine bone samples. This investigation delves into the effect of gamma rays, from a Cs-137 activity equal to 220 µCi at integral doses of 20 kGy, on the surface structures, vibration properties, and attenuation coefficient of HAP, in the bovine femur bone and ribs. The mass attenuation coefficients for HAP powder were registered as E= 511 keV, with 1276 keV gamma energy released from the 22Na radioisotope, and 662 keV gamma energy released from the 137Cs radioactive isotope. We used the Nist XCom program to calculate the mass attenuation coefficient of HAP before and after radiation for photon energies ranging from 0 keV to 100 keV.
References
AGRAWAL, K., SINGH, G., PURI, D. & PRAKASH, S. 2011. Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application. J. Miner. Mater. Charact. Eng, 10, 727-734.
AJITH KUMAR, B., NAVEEN KUMAR, K. & PRAKASH, T. J. M. C. 2023. Direct conversion x-ray sensing nanocomposite Ca10 (PO4) 6 (OH) 2: AgBiS2 for low-dose x-rays. MRS Communications, 13, 143-149.
AKAR, A., BALTAŞ, H., ÇEVIK, U., KORKMAZ, F. & OKUMUŞOĞLU, N. 2006. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies. Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 203-211.
AKÇA, B., ULUSOY, Ö., ERZENEOĞLU, S. Z. J. A. J. F. S. & ENGINEERING 2022. Total Mass Attenuation Coefficients, Total Photon Interaction Cross Sections, Effective Atomic Numbers and Effective Electron Densities for Some Construction Materials Available in Turkey. Arabian Journal for Science and Engineering, 47, 7479-7486.
AKRAM, M., AHMED, R., SHAKIR, I., IBRAHIM, W. A. W. & HUSSAIN, R. 2014. Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49, 1461-1475.
AMENAGHAWON, A. N., ANYALEWECHI, C. L., DARMOKOESOEMO, H. & KUSUMA, H. S. J. J. O. E. M. 2022. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. Journal of Environmental Management, 302, 113989.
AMINI, M., NOGHREIYAN, A. V., DEHGHANI, Z. & ARA, M. H. M. 2018. Effect of gamma irradiation on the structure characteristics and mass attenuation coefficient of MgO nanoparticles. Radiochimica Acta, 106, 857-864.
BALATSOUKAS, I., KOURKOUMELIS, N. & TZAPHLIDOU, M. 2010. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites. Journal of Applied Physics, 108, 074701.
BANO, N., JIKAN, S. S., BASRI, H., BAKAR, S. A. A. & NUHU, A. H. 2017. Natural hydroxyapatite extracted from bovine bone. Journal of Science and Technology, 9.
BARAKAT, N. A., KHIL, M. S., OMRAN, A., SHEIKH, F. A. & KIM, H. Y. 2009. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of materials processing technology, 209, 3408-3415.
BERGER, M. J. & HUBBELL, J. H. 1987. XCOM: Photon cross sections on a personal computer. National Bureau of Standards, Washington, DC (USA). Center for Radiation ….
BOGDANOVICIENE, I., BEGANSKIENE, A., TÕNSUAADU, K., GLASER, J., MEYER, H.-J. & KAREIVA, A. J. M. R. B. 2006. Calcium hydroxyapatite, Ca10 (PO4) 6 (OH) 2 ceramics prepared by aqueous sol–gel processing. 41, 1754-1762.
BORKOWSKI, L., PRZEKORA, A., BELCARZ, A., PALKA, K., JOZEFACIUK, G., LÜBEK, T., JOJCZUK, M., NOGALSKI, A. & GINALSKA, G. 2020. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. Materials Science and Engineering: C, 116, 111211.
DEHGHANI, Z., NOGHREIYAN, A. V., NADAFAN, M. & ARA, M. M. 2018. The effect of different doses of γ–ray irradiation on the third order nonlinear optical properties, molecular structure and mass attenuation coefficients of synthesized colloidal silver nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 103, 423-429.
FIUME, E., MAGNATERRA, G., RAHDAR, A., VERNÉ, E. & BAINO, F. J. C. 2021. Hydroxyapatite for biomedical applications: A short overview. Ceramics, 4, 542-563.
FORERO-SOSSA, P., SALAZAR-MARTÍNEZ, J., GIRALDO-BETANCUR, A., SEGURA-GIRALDO, B. & RESTREPO-PARRA, E. J. S. R. 2021. Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones. Scientific Reports, 11, 11069.
GEORGE, S., MEHTA, D. & SAHARAN, V. K. J. R. I. C. E. 2020. Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis. Reviews in Chemical Engineering, 36, 369-400.
GHEDJEMIS, A., AYECHE, R. & BENOUADAH, A. J. J. O. T. A. C. S. 2022. A comparative study on physicochemical properties of hydroxyapatite powder prepared from bovine and dromedary bone. 58, 607-616.
GIRIJA, E., PARTHIBAN, S. P., SUGANTHI, R., ELAYARAJA, K., JOSHY, M., VANI, R., KULARIA, P., ASOKAN, K., KANJILAL, D. & YOKOGAWA, Y. 2008. High energy irradiation——a tool for enhancing the bioactivity of Hydroxyapatite. Journal of the Ceramic Society of Japan, 116, 320-324.
GOMES, A. D., DE OLIVEIRA, A. A., HOUMARD, M. & NUNES, E. H. 2021. Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Applied Radiation and Isotopes, 174, 109758.
GUNDUZ, O., ERKAN, E. M., DAGLILAR, S., SALMAN, S., AGATHOPOULOS, S. & OKTAR, F. N. 2008. Composites of bovine hydroxyapatite (BHA) and ZnO. Journal of Materials Science, 43, 2536-2540.
HUBBELL, J. H. & SELTZER, S. M. 1995. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and Technology-PL, Gaithersburg, MD (United ….
KAMINSKI, A., JASTRZEBSKA, A., GRAZKA, E., MAROWSKA, J., GUT, G., WOJCIECHOWSKI, A. & UHRYNOWSKA-TYSZKIEWICZ, I. 2012. Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods. Cell and tissue banking, 13, 363-374.
KIEN, P. T., PHU, H. D., LINH, N. V. V., QUYEN, T. N. & HOA, N. T. J. N. B. F. R. M. 2018. Recent trends in hydroxyapatite (HA) synthesis and the synthesis report of nanostructure HA by hydrothermal reaction. 343-354.
KOKSAL, O., APAYDıN, G., TOZAR, A., KARAHAN, İ. H. & CENGIZ, E. 2019. Assessment of the mass attenuation parameters with using gamma-rays for manganese substituted nano hydroxyapatite. Radiation Physics and Chemistry, 159, 76-80.
KOURKOUMELIS, N., ZHANG, X., LIN, Z. & WANG, J. 2019. Fourier transform infrared spectroscopy of bone tissue: Bone quality assessment in preclinical and clinical applications of osteoporosis and fragility fracture. Clinical Reviews in Bone and Mineral Metabolism, 17, 24-39.
LONDOÑO-RESTREPO, S. M., RAMIREZ-GUTIERREZ, C. F., DEL REAL, A., RUBIO-ROSAS, E. & RODRIGUEZ-GARCÍA, M. E. 2016. Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air. Journal of materials science, 51, 4431-4441.
MALLA, K. P., REGMI, S., NEPAL, A., BHATTARAI, S., YADAV, R. J., SAKURAI, S. & ADHIKARI, R. 2020. Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. International journal of biomaterials, 2020.
MAMEDE, A. P., GONÇALVES, D., MARQUES, M. P. M. & BATISTA DE CARVALHO, L. A. 2018. Burned bones tell their own stories: A review of methodological approaches to assess heat-induced diagenesis. Applied Spectroscopy Reviews, 53, 603-635.
MARCUCCI, G., BELTRAMI, G., TAMBURINI, A., BODY, J., CONFAVREUX, C., HADJI, P., HOLZER, G., KENDLER, D., NAPOLI, N. & PIERROZ, D. J. A. O. O. 2019. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Annals of Oncology, 30, 908-920.
MORE, C. V., LOKHANDE, R. M. & PAWAR, P. P. 2016. Effective atomic number and electron density of amino acids within the energy range of 0.122–1.330 MeV. Radiation Physics and Chemistry, 125, 14-20.
ODUSOTE, J. K., DANYUO, Y., BARUWA, A. D. & AZEEZ, A. A. 2019. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. Journal of applied biomaterials & functional materials, 17, 2280800019836829.
OOI, C., HAMDI, M. & RAMESH, S. 2007. Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics international, 33, 1171-1177.
OSUCHUKWU, O. A., SALIHI, A., ABDULLAHI, I., ABDULKAREEM, B. & NWANNENNA, C. S. J. S. A. S. 2021. Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: A review. 3, 1-23.
PREDOI, D., CIOBANU, C. S., ICONARU, S. L., PREDOI, S. A., CHIFIRIUC, M. C., RAAEN, S., BADEA, M. L. & ROKOSZ, K. 2022. Impact of Gamma Irradiation on the Properties of Magnesium-Doped Hydroxyapatite in Chitosan Matrix. Materials, 15, 5372.
RAFIEI, M. M., PARSAEI, S., KAUR, P., SINGH, K., BÜYÜKYıLDıZ, M., KURUDIREK, M. J. B. P. & EXPRESS, E. 2022. A Monte Carlo investigation of some important radiation parameters and tissue equivalency for photons below 1 keV in human tissues. Biomedical Physics & Engineering Express, 8, 025002.
RAHMAN, N., KHAN, R. & BADSHAH, S. 2018. Effect of x-rays and gamma radiations on the bone mechanical properties: literature review. Cell and Tissue Banking, 19, 457-472.
RANA, M. M., AKHTAR, N., RAHMAN, M., HASAN, M. Z. & ASADUZZAMAN, S. 2017. Extraction and characterization of hdroxyapatite from bovine cortical bone and effect of radiatio. International Journal of Biosciences, 11, 20-30.
SALCEDO, M. P., SOOD, A. K., JHINGRAN, A., EIFEL, P. J., KLOPP, A. H., IYER, R. B., FELLMAN, B. M., JIMENEZ, C. & SCHMELER, K. M. J. C. 2020. Pelvic fractures and changes in bone mineral density after radiotherapy for cervical, endometrial, and vaginal cancer: a prospective study of 239 women. Cancer, 126, 2607-2613.
SIDHU, B. S., DHALIWAL, A., MANN, K. & KAHLON, K. 2012. Study of mass attenuation coefficients, effective atomic numbers and electron densities for some low Z compounds of dosimetry interest at 59.54 keV incident photon energy. Annals of Nuclear Energy, 42, 153-157.
SINGH, K., KAUR, G., KUMAR, V., DHAMI, A. & LARK, B. 1998. Measurement of attenuation coefficients of some dilute solutions at 662 keV. Radiation Physics and Chemistry, 53, 123-126.
SOBCZAK-KUPIEC, A. & WZOREK, Z. 2012. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceramics International, 38, 641-647.
TARIQ, U., HAIDER, Z., HUSSAIN, R., TUFAIL, K. & ALI, J. LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements. AIP Conference Proceedings, 2017. AIP Publishing LLC, 030027.
TIWARI, P. & MISHRA, K. P. J. I. J. O. R. B. 2020. Flavonoids sensitize tumor cells to radiation: molecular mechanisms and relevance to cancer radiotherapy. 96, 360-369.
UNAL, S., OKTAR, F. N., MAHIROGULLARI, M. & GUNDUZ, O. 2021. Bone structure and formation: A new perspective. Bioceramics. Elsevier.
WANG, Q., LI, W., LIU, R., ZHANG, K., ZHANG, H., FAN, S. & WANG, Z. 2019. Human and non-human bone identification using FTIR spectroscopy. International journal of legal medicine, 133, 269-276.
YAZDANI DARKI, S., KESHAVARZ, S. J. N. S. & TECHNIQUES 2020. Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes. Nuclear Science and Techniques, 31, 119.
YELTEN-YILMAZ, A. & YILMAZ, S. J. C. I. 2018. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. 44, 9703-9710.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rozhan Dilshad Haider, Mohammed Issa Hussein, Shaida Anwer Kakil

This work is licensed under a Creative Commons Attribution 4.0 International License.