Photodetector Devices: Investigation of ZnO Thin Films Fabricated via SILAR Technique on Various Substrates:
DOI:
https://doi.org/10.21271/ZJPAS.36.4.3Keywords:
ZnO Nanostructure, SILAR Procedure, Planar Photodetector, Silicon, Porous Silicon, Responsivity, and Sensitivity.Abstract
The synthesis of photodetectors for ZnO nanostructure films on various substrates, including p-type (100) silicon (Si), and porous silicon (pSi), has been achieved through the utilization of a straightforward technique known as the successive ionic layer adsorption and reaction (SILAR) method. To analyze the optical properties, surface morphology, and crystal structure of the ZnO layers, UV-Vis spectrometers, field emission scanning electron microscopes (FESEM), and X-ray diffraction (XRD) were employed. The characterization of the ZnO samples revealed that the number of SILAR cycles has a significant impact on the morphology and optical band gap of the synthesized layer. The Fourier-transform infrared (FTIR) spectrum successfully detected the distinctive extended vibration mode of ZnO. By conducting 20 cycles, high-quality hexagonal ZnO was obtained. The responsivity of the planar ZnO on silicon (ZnO/Si) and ZnO on the porous silicon (ZnO/pSi) surface exhibited variations depending on the substrate surface and bias voltage. The results indicated that the (ZnO/pSi) heterojunction demonstrated a high response in the visible range (350–850 nm) at a low bias voltage. On the other hand, the (ZnO/Si) photodetector displayed a high sensitivity of 666.66% at a low voltage of 1V in comparison to the (ZnO/pSi) photodetector, which exhibited a sensitivity of 483%.
References
Al Abdullah, K., Awad, S., Zaraket, J. and Salame, C., 2017. Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperatures. Energy Procedia, 119, pp.565-570.
Al-Hardan, N.H., Hamid, M.A.A., Ahmed, N.M., Jalar, A., Shamsudin, R., Othman, N.K., Keng, L.K. and Mohammed, S.M., 2015. A study on the UV photoresponse of hydrothermally grown zinc oxide nanorods with different aspect ratios. IEEE Sensors Journal, 15(12), pp.6811-6818.
Al-Heuseen, K., Aljameel, A.I. and Hussein, R.K., 2024. Synthesis and characterization of Cu-Doped ZnO nanostructures for UV sensing application. BMC Chemistry, 18(1), p.32.
Al-Rasheedi, A., Ansari, A.R., Abdeldaim, A.M. and Aida, M.S., 2022. Growth of zinc oxide thin films using different precursor solutions by spray pyrolysis technique. The European Physical Journal Plus, 137(12), pp.1-11.
Bayan, S., 2024. Recent Strategies for Development of ZnO-Based Efficient UV-Photodetectors. In Nanoscale Matter and Principles for Sensing and Labeling Applications (pp. 165-179). Singapore: Springer Nature Singapore.
Boruah, B.D., 2019. Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Advances, 1(6), pp.2059-2085.
Cruz, M.A., Garza-Hernández, R., Horley, P.P., Mata-Ramírez, J., Martínez-G, E. and Aguirre-Tostado, F.S., 2018. Low-temperature ZnO films grown by successive ionic layer adsorption and reaction methods. Thin Solid Films, 663, pp.49-55.
Ghos, B.C., Farhad, S.F.U., Patwary, M.A.M., Majumder, S., Hossain, M.A., Tanvir, N.I., Rahman, M.A., Tanaka, T. and Guo, Q., 2021. Influence of the substrate, process conditions, and post-annealing temperature on the properties of ZnO thin films grown by the successive ionic layer adsorption and reaction method. ACS omega, 6(4), pp.2665-2674.
Govender, K., Boyle, D.S., Kenway, P.B. and O'Brien, P., 2004. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 14(16), pp.2575-2591.
Guo, N., Xiao, L., Gong, F., Luo, M., Wang, F., Jia, Y., Chang, H., Liu, J., Li, Q., Wu, Y. and Wang, Y., 2020. Light‐Driven WSe2‐ZnO Junction Field‐Effect Transistors for High‐Performance Photodetection. Advanced Science, 7(1), p.1901637.
Jiang, Z., Liu, B., Yu, L., Tong, Y., Yan, M., Zhang, R., Han, W., Hao, Y., Shangguan, L., Zhang, S. and Li, W., 2023. Research progresses in preparation methods and applications of zinc oxide nanoparticles. Journal of Alloys and Compounds, p.170316.
Kayahan, E., 2010. White light luminescence from annealed thin ZnO deposited porous silicon. Journal of Luminescence, 130(7), pp.1295-1299.
Khokhra, R., Bharti, B., Lee, H.N. and Kumar, R., 2017. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of the solution method. Scientific reports, 7(1), p.15032.
Lam, K.T., Hsiao, Y.J., Ji, L.W., Fang, T.H., Hsiao, K.H. and Chu, T.T., 2017. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures. Nanoscale research letters, 12, pp.1-7.
Lan, C., Li, C., Yin, Y., Guo, H. and Wang, S., 2015. Synthesis of single-crystalline GeS nanoribbons for high-sensitivity visible-light photodetectors. Journal of Materials Chemistry C, 3(31), pp.8074-8079.
Lu, Y.J., Shi, Z.F., Shan, C.X. and Shen, D.Z., 2019. ZnO nanostructures and lasers. In Nanoscale Semiconductor Lasers (pp. 75-108). Elsevier.
Mohammad, S.M., Hassan, Z., Ahmed, N.M., Al-Hardan, N.H. and Bououdina, M., 2015. Fabrication of low-cost UV photodetector using ZnO nanorods grown onto nylon substrate. Journal of Materials Science: Materials in Electronics, 26, pp.1322-1331.
More, P.B., Bansode, S.B., Aleks, M. and Pathan, H.M., 2023. Synthesis of ZnO thin films using chemical bath and investigation of physicochemical properties. ES Energy & Environment, 22, p.983.
Naderi, N. and Hashim, M.R., 2013. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates. Journal of Alloys and Compounds, 552, pp.356-362.
Nikov, R.G., Dikovska, A.O., Nedyalkov, N.N., Atanasov, P.A., Atanasova, G., Hirsch, D. and Rauschenbach, B., 2017. ZnO nanostructures produced by pulsed laser deposition in open air. Applied Physics A, 123, pp.1-7.
Parler, C.M., Ritter, J.A. and Amiridis, M.D., 2001. Infrared spectroscopic study of sol-gel derived mixed-metal oxides. Journal of non-crystalline solids, 279(2-3), pp.119-125.
Pon, V.D., Wilson, K.J., Hariprasad, K., Ganesh, V., Ali, H.E., Algarni, H. and Yahia, I.S., 2021. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices and Microstructures, 151, p.106790.
Rahman, F., 2019. Zinc oxide light-emitting diodes: a review. Optical Engineering, 58(1), pp.010901-010901.
Rahman, M.A., Mamun, S.N., Hossain, A.K.M.A. and Ton-That, C., 2023. ZnO Nanorods on Li-Doped ZnO Thin Films for Efficient p–n Homojunction Light-Emitting Diodes. ACS Applied Nano Materials, 6(17), pp.15757-15763.
Shabannia, R. and Naderi, N., 2019. Effect of growth time on ZnO thin films prepared by low-temperature chemical bath deposition on PS substrate. Journal of Nanoanalysis, 6(2), pp.99-104.
Shabannia, R., 2015. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time. Progress in Natural Science: Materials International, 25(2), pp.95-100.
Shaikh, S.K., Inamdar, S.I., Ganbavle, V.V. and Rajpure, K.Y., 2016. Chemical bath deposited ZnO thin film-based UV photoconductive detector. Journal of Alloys and Compounds, 664, pp.242-249.
Shaoqiang, C., Ziqiang, Z., Jianzhong, Z., Jian, Z., Yanling, S., Ke, Y., Weiming, W., Xiaohua, W., Xiao, F., Laiqiang, L. and Li, S., 2004. Hydroxyapatite coating on porous silicon substrate obtained by precipitation process. Applied Surface Science, 230(1-4), pp.418-424.
Singh, R.G., Singh, F., Mehra, R.M., Kanjilal, D. and Agarwal, V., 2011. Synthesis of nanocrystalline α-Zn2SiO4 at ZnO–porous silicon interface: Phase transition study. Solid State Communications, 151(9), pp.701-703.
Sreedev, P., Rakhesh, V., Roshima, N.S. and Shankar, B., 2019, March. Preparation of Zinc Oxide Thin Films by SILAR method and its Optical analysis. In Journal of Physics: Conference Series (Vol. 1172, No. 1, p. 012024). IOP Publishing.
Syrek, K., Tynkevych, O., Wojtas, M., Kozieł, M., Pięta, Ł. and Zaraska, L., 2023. Room-temperature electrochemical deposition of nanostructured ZnO films on FTO substrate and their photoelectrochemical activity. Journal of Industrial and Engineering Chemistry, 126, pp.171-180.
Tripathy, A., Wąsik, P., Sreedharan, S., Nandi, D., Bikondoa, O., Su, B., Sen, P. and Briscoe, W.H., 2018. Facile fabrication of multifunctional ZnO urchins on surfaces. Colloids and Interfaces, 2(4), p.74.
Wang, P., Jin, C., Wu, X., Zhan, H., Zhou, Y., Wang, H. and Kang, J., 2012. Quality improvement of ZnO thin layers overgrown on Si (100) substrates at room temperature by nitridation pretreatment. AIP Advances, 2(2).
Wisz, G., Virt, I., Sagan, P., Potera, P. and Yavorskyi, R., 2017. Structural, optical, and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Research Letters, 12, pp.1-7.
Xu, L., Li, X., Zhan, Z., Wang, L., Feng, S., Chai, X., Lu, W., Shen, J., Weng, Z. and Sun, J., 2015. Catalyst-free, selective growth of ZnO nanowires on SiO2 by chemical vapor deposition for transfer-free fabrication of UV photodetectors. ACS Applied Materials & interfaces, 7(36), pp.20264-20271.
Zhang, Y., Ji, T., Zou, R., Ha, E., Hu, X., Cui, Z., Xu, C., Xu, K., Zhang, Y. and Hu, J., 2020. An efficiently enhanced UV-visible light photodetector with a Zn: NiO/p-Si isotype heterojunction. Journal of Materials Chemistry C, 8(10), pp.3498-3508.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shaida Anwar Kakil, Ahmed Hassan Kurda, Yousif Mawlood Hassan

This work is licensed under a Creative Commons Attribution 4.0 International License.