Graphene-Perovskite Based Surface Plasmon Resonance Biosensor

Authors

  • Nasih Hma Salah Department of Physics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.35.6.4

Keywords:

Surface plasmon resonance (SPR), perovskite, Kreschmann’s configuration, attenuated total reflection (ATR), angular interrogation, sensitivity enhancement.

Abstract

In this article, a highly sensitive surface plasmon resonance (SPR) based biosensor is proposed, Kretschmar’s configuration with angular interrogation as the most successful and popular technique has been used, a laser with 664 nm is impinged on a device that consists of a stratified medium that includes perovskite ( ), a transfer matrix method for a p-polarized coherent and collimated incident laser beam is used to calculate the reflectivity, and this proposed device is more sensitive for a medium with refractive indices between 1.34 to 1.40. In order to obtain a high enough sensitivity, four different configurations have been brought to the reader’s attention. The device has been introduced with the aid of some important quantities to measure the sensitivity, figure of merit (FoM), full width at half-maximum (FWHM) and detection accuracy (DA), their results respectively are , . Finally, these performances are far better than the first simple configuration, and the simulation results are implemented in Matlab codes.

References

AKJOUJ, A. & MIR, A. 2022. Modeling of surface plasmon resonance biosensor based on Ag/BiFeO3/Ni using 2D nanomaterial perovskite MAPbBr3. Materials Today Communications, 33, 104591.

BALL, J. M., STRANKS, S. D., HÖRANTNER, M. T., HÜTTNER, S., ZHANG, W., CROSSLAND, E. J., RAMIREZ, I., RIEDE, M., JOHNSTON, M. B., FRIEND, R. H. J. E. & SCIENCE, E. 2015. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy & Environmental Science, 8, 602-609.

BOOZER, C., KIM, G., CONG, S., GUAN, H. & LONDERGAN, T. 2006. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current opinion in biotechnology, 17, 400-405.

BRUNA, M. & BORINI, S. J. A. P. L. 2009. Optical constants of graphene layers in the visible range. Appl. Phys. Lett., 94.

BRYAN-BROWN, G., YANG, F., BRADBERRY, G. & SAMBLES, J. 1991. Prism and grating coupling to long-range coupled-surface exciton–polaritons. JOSA B, 8, 765-769.

CHEN, S. & LIN, C. 2019a. Sensitivity analysis of graphene multilayer based surface plasmon resonance biosensor in the ultraviolet, visible and infrared regions. Applied Physics A, 125, 1-6.

CHEN, S. & LIN, C. 2019b. Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Materials Research Express, 6, 056503.

CHIEN, F. C. & CHEN, S. J. 2004. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosensors and Bioelectronics, 20, 633-642.

CHOI, S. H., KIM, Y. L. & BYUN, K. M. 2011. Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Optics express, 19, 458-466.

COUTURE, M., ZHAO, S. S. & MASSON, J.-F. 2013. Modern surface plasmon resonance for bioanalytics and biophysics. Physical Chemistry Chemical Physics, 15, 11190-11216.

DHIBI, A., HAKAMI, J. & ABASSI, A. 2021. Performance analysis of surface plasmon resonance sensors using bimetallic alloy-perovskite-bimetallic alloy and perovskite-bimetallic alloy-perovskite nanostructures. Physica Scripta, 96, 065505.

EID, M. M., HABIB, M. A., ANOWER, M. S. & RASHED, A. N. Z. J. M. T. 2021. Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsystem Technologies, 27, 1007-1014.

GUPTA, B. D. & SHARMA, A. K. 2005. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sensors and Actuators B: Chemical, 107, 40-46.

HAES, A. J. & DUYNE, R. P. V. 2004. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Review of Molecular Diagnostics, 4, 527-537.

HMA SALAH, N. 2015. Surface Plasmon Resonance Sensing and Characterisation of Nano-Colloids for Nanotoxicology Applications.

JAIN, P. K., HUANG, X., EL-SAYED, I. H. & EL-SAYED, M. A. 2007. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2, 107-118.

KARKI, B., SALAH, N. H., SRIVASTAVA, G., MUDULI, A. & YADAV, R. B. J. P. 2023. A Simulation Study for Dengue Virus Detection Using Surface Plasmon Resonance Sensor Heterostructure of Silver, Barium Titanate, and Cerium Oxide. Plasmonics, 1-10.

KHAN, S. A., KHAN, N. Z., XIE, Y., ABBAS, M. T., RAUF, M., MEHMOOD, I., RUNOWSKI, M., AGATHOPOULOS, S. & ZHU, J. 2022. Optical sensing by metamaterials and metasurfaces: from physics to biomolecule detection. Advanced Optical Materials, 10, 2200500.

KRAVETS, V., JALIL, R., KIM, Y.-J., ANSELL, D., AZNAKAYEVA, D., THACKRAY, B., BRITNELL, L., BELLE, B., WITHERS, F. & RADKO, I. 2014. Graphene-protected copper and silver plasmonics. Scientific reports, 4, 5517.

KUMAR MAHARANA, P., BHARADWAJ, S. & JHA, R. J. J. O. A. P. 2013. Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. Journal of Applied Physics, 114.

KURIHARA, K. & SUZUKI, K. 2002. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann's theory. Analytical chemistry, 74, 696-701.

LEE*2, H. R. G. A. S. H. 2010. Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuratio. Materials Transactions, 51, 6.

LEGUY, A. M., HU, Y., CAMPOY-QUILES, M., ALONSO, M. I., WEBER, O. J., AZARHOOSH, P., VAN SCHILFGAARDE, M., WELLER, M. T., BEIN, T. & NELSON, J. J. C. O. M. 2015. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater., 27, 3397-3407.

LIN, C. & CHEN, S. J. J. O. A. P. 2019. Design of high-performance Au-Ag-dielectric-graphene based surface plasmon resonance biosensors using genetic algorithm. Journal of Applied Physics, 125.

MAHARANA, P. K. & JHA, R. 2012. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors and Actuators B: Chemical.

MAHARANA, P. K., SRIVASTAVA, T. & JHA, R. J. P. 2014. On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics, 9, 1113-1120.

MARUSOV, G. P., SWEATT, A. J., PIETROSIMONE, K., BENSON, D. R., GEARY, S. J., SILBART, L. K., CHALLA, S., LAGOY, J., LAWRENCE, D. A. & LYNES, M. 2011. A Microarray Biosensor for Multiplexed Detection of Microbes Using Grating-Coupled Surface Plasmon Resonance Imaging. Environmental science & technology.

NURROHMAN, D. T. & CHIU, N.-F. 2021. A review of graphene-based surface plasmon resonance and surface-enhanced raman scattering biosensors: Current status and future prospects. Nanomaterials, 11, 216.

OHTA, K. & ISHIDA, H. 1990. Matrix formalism for calculation of electric field intensity of light in stratified multilayered films. Applied optics, 29, 1952-1959.

PATIL, P. O., PANDEY, G. R., PATIL, A. G., BORSE, V. B., DESHMUKH, P. K., PATIL, D. R., TADE, R. S., NANGARE, S. N., KHAN, Z. G. & PATIL, A. M. 2019. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosensors and Bioelectronics, 139, 111324.

RIFAT, A. A., MAHDIRAJI, G. A., AHMED, R., CHOW, D. M., SUA, Y., SHEE, Y. & ADIKAN, F. M. 2015. Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics Journal, 8, 1-8.

SALAH, N. H. January 1, 2019. Surface Plasmon Resonance Sensor of Toxic Nanoparticles in Aqueous Systems. Eurasian Journal of Science & Engineering (EAJSE), 4, 9.

SALAH, N. H., JENKINS, D. & HANDY, R. 2014. Graphene and its Influence in the Improvement of Surface Plasmon Resonance (SPR) Based Sensors: a Review.

SALAH, N. H., JENKINS, D., PANINA, L., HANDY, R., PAN, G. & AWAN, S. 2012. Self-Sensing Surface Plasmon Resonance for the Detection of Metallic Nanoparticles. Smart Nanosystems in Engineering and Medicine, 2, 10-22.

SHANKARAN, D. R., GOBI, K. V. & MIURA, N. 2007. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121, 158-177.

STAHELIN, R. V. 2013. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Molecular biology of the cell, 24, 883-886.

TUDOS, R. B. M. S. A. A. J. 2008. Handbook of Surface PLasmon Resonance.

VERMA, R., GUPTA, B. D., JHA, R. J. S. & CHEMICAL, A. B. 2011. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors and Actuators B: Chemical, 160, 623-631.

WANG, M., HUO, Y., JIANG, S., ZHANG, C., YANG, C., NING, T., LIU, X., LI, C., ZHANG, W. & MAN, B. 2017. Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS 2 hybrid nanostructures and Au–Ag bimetallic film. RSC advances, 7, 47177-47182.

WANG, Q., CAO, S., GAO, X., CHEN, X. & ZHANG, D. J. C. 2021. Improving the detection accuracy of an Ag/Au bimetallic surface plasmon resonance biosensor based on graphene. Chemosensors, 10, 10.

WANG, Q., REN, Z.-H., ZHAO, W.-M., WANG, L., YAN, X., ZHU, A.-S., QIU, F.-M. & ZHANG, K.-K. 2022. Research advances on surface plasmon resonance biosensors. Nanoscale, 14, 564-591.

WU, L., CHU, H.-S., KOH, W. S. & LI, E.-P. J. O. E. 2010. Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 18, 14395-14400.

XUE-FENG, L. & LI, H. A universal model of surface plasmon resonance characteristics for isotropic multilayer films. 2010. IEEE, 263-266.

YAMAMOTO, M. 2002. Surface plasmon resonance (SPR) theory: tutorial. Review of Polarography, 48, 209-237.

ZHAO, X., CHU-SU, Y., TSAI, W.-H., WANG, C.-H., CHUANG, T.-L., LIN, C.-W., TSAO, Y.-C. & WU, M.-S. 2015. Improvement of the sensitivity of the surface plasmon resonance sensors based on multi-layer modulation techniques. Optics Communications, 335, 32-36.

Published

2023-12-15

How to Cite

Hma Salah, N. (2023). Graphene-Perovskite Based Surface Plasmon Resonance Biosensor. Zanco Journal of Pure and Applied Sciences, 35(6), 28–37. https://doi.org/10.21271/ZJPAS.35.6.4

Issue

Section

Mathematics, Physics and Geological Sciences