Structural Properties of Lead Oxide-Doped Zinc Tellurite Glasses


  • Hiwa L. Hamad Department of physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
  • Saman Q. Mawlud Department of physics, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq



Tellurite glasses, Raman spectra, Lead tellurite glass, XRD, Structural properties


The melt quenching technique was used to create a ternary (90-x) TeO2 - xPbO -10ZnO glass system (x = 0, 10, 20, 25, 30, 35, and 40 mol%). The X-ray diffraction (XRD) technique is used for improving the amorphous nature of the glass samples. In addition, to examine the structural characteristics of the glass samples, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy are used. Raman spectroscopy was used to evaluate the impact of PbO on the glass structure. A strong frequency peak at 729.63-774.69 cm-1 was detected in the Raman spectra, indicating that the TeO4 and TeO3/TeO3+1 structural units make up the majority of the glass network. The TeO3/TeO3+1 structural unit contain non-bonding oxygen molecules that are stretched in the Pb-O, Zn-O, Te-O, and Te-O-Te bridging configurations, vibrations, and Raman spectra.   


Ahmed, K. F., Ibrahim, S. O., Sahar, M. R., Mawlud, S. Q. & Khizir, H. A. Thermal analyses, spectral characterization and structural interpretation of Nd3+/Er3+ ions co-doped TeO2-ZnCl2 glasses system. AIP Conference Proceedings, 2017a. AIP Publishing LLC, 020008.

Ahmed, K. F., Ibrahim, S. O., Sahar, M. R., Mawlud, S. Q. J. Z. J. O. P. & Sciences, A. 2017b. Effect of Rare Earth Co-Doping On Physical and Optical Characterization of Zinc Tellurite Glass Embedded Ag NPs. 28, 68-73.

Balda, R., Fernández, J., Arriandiaga, M. & Fernández-Navarro, J. M. J. J. O. P. C. M. 2007. Spectroscopy and frequency upconversion in Nd3+-doped TeO2–TiO2–Nb2O5 glass. 19, 086223.

El-Mallawany, R. A. 2001. Tellurite glasses handbook: physical properties and data, CRC press.

Fultz, B. & Howe, J. M. 2012. Transmission electron microscopy and diffractometry of materials, Springer Science & Business Media.

Jaba, N., Mermet, A., Duval, E. & Champagnon, B. J. J. O. N.-C. S. 2005. Raman spectroscopy studies of Er3+-doped zinc tellurite glasses. 351, 833-837.

Kaur, A., Khanna, A., Pesquera, C., González, F. & Sathe, V. J. J. O. N.-C. S. 2010. Preparation and characterization of lead and zinc tellurite glasses. 356, 864-872.

Mawlud, S. Q. Absorption and luminescence spectral properties study of Sm3+ doped TeO2-Na2O glasses. Proc. Int. Sci. Postgraduate Conf., 2016. 1-10.

Mawlud, S. Q., Ameen, M., Sahar, R. M. & Ahmed, K. J. J. a. M. E. 2016a. Infiuence of Sm2O3 ion concentration on structural and thermal modification of TeO2-Na2O glasses. 5.

Mawlud, S. Q., Ameen, M. M., Sahar, M. R. & Ahmed, K. F. J. J. O. L. 2017a. Plasmon-enhanced luminescence of samarium doped sodium tellurite glasses embedded with gold nanoparticles: Judd-Ofelt parameter. 190, 468-475.

Mawlud, S. Q., Ameen, M. M., Sahar, M. R., Ahmed, K. F. J. S. S. S. & Technology. 2016b. Optical absorption spectra of samarium doped TeO2-Na2O glasses. 24, 94-106.

Mawlud, S. Q., Ameen, M. M., Sahar, R. B., Ahmed, K. F. J. Z. J. O. P. & Sciences, A. 2017b. Structural and thermal behavior of Sm3+ ions doped sodium tellutite glasses. 29.

Mawlud, S. Q. J. T. G. S. M. a. I. O. & Beyond. 2018. Optical Properties of Tellurite Glasses Embedded with Gold Nanoparticles. 105-142.

Mclaughlin, J., Tagg, S., Zwanziger, J., Haeffner, D. & Shastri, S. J. J. O. N.-C. S. 2000. The structure of tellurite glass: a combined NMR, neutron diffraction, and X-ray diffraction study. 274, 1-8.

Narayanan, R. A. & Zwanziger, J. W. J. J. O. N.-C. S. 2003. The glass forming ability of tellurites: a rigid polytope approach. 316, 273-280.

Narazaki, A., Tanaka, K., Hirao, K. & Soga, N. J. J. O. a. P. 1999. Induction and relaxation of optical second-order nonlinearity in tellurite glasses. 85, 2046-2051.

Pal, I., Agarwal, A., Sanghi, S. & Aggarwal, M. J. O. M. 2012. Structure and optical absorption of Sm3+ and Nd3+ ions in cadmium bismuth borate glasses with large radiative transition probabilities. 34, 1171-1180.

Qin, G., Jose, R. & Ohishi, Y. J. J. O. a. P. 2007. Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. 101, 093109.

Saudi, H., Tekin, H., Zakaly, H. M., Issa, S. A., Susoy, G. & Zhukovsky, M. J. O. M. 2021. The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. 114, 110948.

Singh, R. & Chakravarthi, J. J. P. R. B. 1997. dc conductivity of V 2 O 5-containing zinc tellurite glasses. 55, 5550.

Souza, R. F., Alencar, M. A., Hickmann, J. M., Kobayashi, R. & Kassab, L. R. J. a. P. L. 2006. Femtosecond nonlinear optical properties of tellurite glasses. 89, 171917.

Suehara, S., Yamamoto, K., Hishita, S., Aizawa, T., Inoue, S. & Nukui, A. J. P. R. B. 1995. Bonding nature in tellurite glasses. 51, 14919.

Ticha, H., Schwarz, J. & Tichy, L. J. J. O. N.-C. S. 2017. On the structural arrangement and optical band gap (PbO) x (ZnO) 10 (TeO2) 90− x glasses. 459, 63-67.

Ticha, H., Schwarz, J., Tichy, L. J. M. C. & Physics. 2019. Raman spectra and optical band gap in some PbO-ZnO-TeO2 glasses. 237, 121834.

Yusof, N., Ghoshal, S., Azlan, M. J. J. O. A. & Compounds. 2017. Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. 724, 1083-1092.



How to Cite

Hiwa L. Hamad, & Saman Q. Mawlud. (2024). Structural Properties of Lead Oxide-Doped Zinc Tellurite Glasses. Zanco Journal of Pure and Applied Sciences, 36(1), 63–69.



Mathematics, Physics and Geological Sciences