Transferring of Exopolysaccharide (EPS) Gene Cluster from Rhizobium leguminosarum to Pseudomonas fluorescens by Horizontal Gene Transfer Techniques

Authors

  • Karzan K. Mahmud Department of Plant Protection, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Iraq
  • Aras Muhammad Khudhur Department of Soil and water, College of Agricultural Engineering Sciences, SalahaddinUniversity-Erbil, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21271/ZJPAS.33.6.10

Keywords:

EPS gene cluster, Capsule formations, Conjugation, R. leguminosarum, P. fluorescens, transconjugant P. fluorescens

Abstract

To increase drought resistance of efficient plant growth promoting Psuedomonas  fluorescens isolated from Erbil governorate soils, exopolysaccharide (EPS) gene cluster was transferred from Rhizobium leguminosarum to P. fluorescens. EPS gene cluster is responsible for generating of capsular polysaccharides which are tightly attached to the cell surface and extracellular polysaccharides that are directly secreted to the environment. For P. fluorescens and R. leguminosarum isolations, different soil samples were collected in Erbil governorate.  According to morphological, biochemical and molecular examinations 75 P. fluorescens isolates and 58 R. leguminosarum isolates were identified from 110 soil samples. Most P. fluorescens isolates showed efficiency in phosphate solubilization, hydrogen cyanide, siderophores and indol acidic acid production, the most efficient P. fluorescens (Mpf16) was selected for conjugation process.  Potential transferring of EPS genes, included EPS1, EPS2, and EPS3, was investigated in this study. Gene cluster was transferred successfully from R. leguminosarum into P. fluorescens by horizontal conjugation gene transfer technique after confirmation via molecular techniques using different primers and enzymes. The expression of transferred EPS gene cluster from transconjugant P. fluorescens was confirmed by testing capsule formations from viable cells. The new generated capsule former P. fluorescens can be used later on as an efficient bio-fertilizer agent for enhancing plant growth and crop production in drought cultivated soils.

 

REFERENCES

ANZAI; KIM, H; PARK, JY; WAKABAYASHI H, AND OYAIZU H. 2000. "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Eyol Mcrobiol. 50(4): 1563-89.

ATLAS RM AND ATLAS R.M.., 2004. Handbook of Microbiological Media (3rd ed.). Bioscience.  CRC Press. pp. Boca Raton. 237–247. 

BUSTIN SA, MULLER R, AND NOLAN T. 2020. Parameters for Successful PCR Primer Design. Methods Mol Biol. 2065:5-22.

BIKRAM NEPALI , SABIN BHATTARAI ,AND JIBAN SHRESTHA. 2020. Identification of Pseudomonas fluorescens using different biochemical tests. International Journal of Applied Biology. ISSN : 2580-2410.               

CUTHBERTSON L, MAINPRIZE IL, NAISMITH JH, AND WHITFIELD C. 2009. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev. 73(1):155-77.

DELVES, B., P. BLACK-BURN, R.J. EVANS AND Z. HUGENHOTT. 1996. Application of bacteria. Anatonic Van Leeuwen Hock, 69: 193-202.

DUDEJA, S. S., GIRI, R., SAINI, R., SUNEJA-MADAN, P., AND KOTHE, E. 2012. Interaction of endophytic microbes with legumes. Journal of basic microbiology, 52(3), 248–260. https://doi.org/10.1002/jobm.201100063

EEVA, T., AHOLA, M., AND LEHIKOINEN, E. 2009. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environmental pollution (Barking, Essex : 1987), 157(11), 3126–3131. https://doi.org/10.1016/j.envpol.2009.05.040

FRAYSSE N, COUDERC F, AND POINSOT V. 2003. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem. 270(7):1365-80.

GREEN MR AND SAMBROOK J. 2018. The Basic Polymerase Chain Reaction (PCR). Cold Spring Harb Protoc. doi: 10.1101/pdb. prot095117. PMID: 29717051.

GOPALAKRISHNAN, S., SATHYA, A., VIJAYABHARATHI, R., VARSHNEY, R. K., GOWDA, C. L., AND KRISHNAMURTHY, L. 2015. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-014-0241-x

HALL JAMES P. J., HARRISON ELLIE, PARNANEN KATARIINA, VIRTAMARKO, BROCKHURST AND MICHAEL A.2020. The Impact of Mercury Selection and Conjugative Genetic Elements on Community Structure and Resistance Gene Transfer. Frontiers in Microbiology. V; 11. P; 1846. HEINARU, E. VEDLER, E. JUTKINA, J. AAVA, M. AND HEINARU, A. 2009, Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20, FEMS Microbiology Ecology, V; 70, Issue 3, P; 563–574 HOLMMES RK, AND JOBLING MG. 1996. "Genetics". Genetics: Conjugation. in: Baron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch. ISBN 0-9631172-1-1. ISLAM, M. R., MADHAIYAN, M., BORUAH, H. P. D., YIM.W., LEE, G., AND SARAVANAN, V. S. 2009. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Journal of Microbiology and Biotechnology, 19,1213-1222.

JIA XIE J. DIANE KNIGHT , AND MARY E. LEGGETT AUTHORS INFO & AFFILIATIONS. 2009. Comparison of media used to evaluate Rhizobium leguminosarum bivar viciae for phosphate-solubilizing ability. Canadian Journal of Microbiology.

JIMTHA JOHN C, JISHMA P, KARTHIKA NR, NIDHEESH KS, RAY JG, MATHEW J, RADHAKRISHNAN EK. 2017. Pseudomonas fluorescens R68 assisted enhancement in growth and fertilizer utilization of Amaranthus tricolor (L.). 3 Biotech. 7(4):256.

JOHNSEN, K., AND NIELSEN, P. 1999. Diversity of Pseudomonas strains isolated with King's B and Gould's S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation. FEMS microbiology letters, 173(1), 155–162. https://doi.org/10.1111/j.1574-6968.1999.tb13497.x

JONES KM, KOBAYASHI H, DAVIES BW, TAGA ME, AND WALKER GC. 2007. rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol.5(8):619-33.

KHIDER, A. K. 2011. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium. Current Research Journal of Biological Sciences, 3, 155-164.

LARDON, L. A., MERKEY, B. V., MARTINS, S., DOTSCH, A., PICIOREANU, C., KREFT, J. U., AND SMETS, B. F. 2011. iDynoMiCS: next-generation individual-based modelling of biofilms. Environmental microbiology, 13(9), 2416–2434. https://doi.org/10.1111/j.1462-2920.2011.02414.x

LONG SR. 2001. Genes and signals in the rhizobium-legume symbiosis. Plant Physiol.125(1):69-72.

LOTAREVA, O. AND PROSOROV, A. 2006. Conjugation transfer of chromosomal and plasmid genes in Bacillus subtilis. Doklady Biological Sciences, 226-228.

LUCY, M., REED, E. AND GLICK, B.R. 2004.  Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86.

MORONA R, PURINS L, TOCILJ A, MATTE A, AND CYGLER M. 2009. Sequence-structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends Biochem Sci. 34(2):78-84.

NASEEM H, AHSAN M, SHAHID MA, AND KHAN N. 2018, Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 58(12):1009-1022.

OLSEN, J., BROWN, D., BAGGESEN, D. L., AND BISGAARD. 1992. Biochemical and molecular characterization of Salmonella enterica serovar berta, and comparison of methods for typing. Epidemiology and infection. London, New York NY, 108, 243-260.

ORTIZ-CASTRO, R., CONTRERAS-CORNEJO, H. A., MACIAS-RODRIGUEZ, L. AND LOPEZ-BUCIO, J. 2009. The role of microbial signals in plant growth and development. Plant signaling & behavior, 4(8),701-712.

PATEL SK, PRATAP CB, VERMA AK, JAIN AK, DIXIT VK, AND WORLD J GASTROENTEROL. 2013. Nath G. Pseudomonas fluorescens-like bacteria from the stomach: A microbiological and molecular study. 19(7): 1056-1067

PANWAR, A., CHOUDHARY, SH,. SHARMA1, M,. Y.K. SHRAMA, R.S. MEENA, S.K. MALHOTRA2, R.S. MEHTA AND O.P. AND AISHWATH. 2012. Morphological and biochemical characterization of Rhizobium isolates obtained from fenugreek (Trigonella foenum). National Research Centre for Seed Species, Tabiji 305 206, 40(2): 196-200

PETER, S., OBERHETTINGER, P., SCHUELE L., DINKELACKER A., VOGEL W., DORFEL D., BEZDAN D., OSSOWSKI M., LIESE J.,AND WILLMANN M. 2017. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosaBMC Genomics 18, 859.

PUHLER, A. AND TIMIS, N. K. 1984. Advanced in molecular genetics. Spring-verlarg Berlin Heidelberg, NewYork. 19, 311.

PRESTON GM. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci.;359(1446):907-18.

RADWAN, T. E. S. E. D., MOHAMED, Z. K. AND REIS, V. 2002. Production of indole-3-acetic acid by different strains of Azospirillum and Herbaspirillum spp. Symbiosis, 32,39-54.

 RHON-CALDERON, E. A., GALARZA, R. A., LOMNICZI, A. AND FALETTI, A. G. 2016. The systemic and gonadal toxicity of 3-methylcholanthrene is prevented by daily administration of alpha-naphthoflavone. Toxicology. 15;353-354:58-69

RITA ABI-GHANEM, JEFFREY L. SMITH AND  GEORGE J. VANDEMARK. 2013. Diversity of Rhizobium leguminosarum from Pea Fields in Washington State.17,112.

SAHARAN, B. S. AND NEHRA, V. 2011. Plant growth promoting rhizobacteria: a critical review.  Life Sciences and Medicine Research, 21,1-30.

SHAHZAD, F., TAJ , M. K., ABBAS, F., SHAFEE, M., ESSOTE, S. A., TAJ, I., AND ACHAKZAI, A. M. 2019. Microbiological studies on Rhizobium leguminosarum isolated from pea (Pisum sativum L.). Bangladesh Journal of Botany48(4), 1223–1229.

SHAIKH, S. S., PATEL, P. R., PATEL, S. S., NIKAM, S. D., RANE, T. U. AND SAYYED, R. Z. 2014. Production of biocontrol traits by banana field fluorescent pseudomonads and their comparison with chemical fungicides. Industrial journal of Experimental bioolgy.52,917-920.

SHAIKH, S. S., SAYYED, R. Z. AND REDDY, M. S. 2016. Plant growth promoting rhizobacteria: an eco-friendly approach for sustainable agroecosystem. In Plant, Soil and Microbes.181-201.

SNYDER, L. AND CHAMPNESS, W. 1997. Transposition and non-homologous recombination. Molecular Genetics of Bacteria. ASM Press, Washington, DC, 195-214.

SONG, X., XIONG, Z., KONG, L., WANG, G., AND AI, L. 2018. Relationship Between Putative eps Genes and Production of Exopolysaccharide in Lactobacillus casei LC2W. Frontiers in microbiology, 9, 1882.

SRINIVASAN R, KARAOZ U, VOLEGOVA M, MACKICHAN J, KATO-MAEDA M, MILLER S, NADARAJAN R, BRODIE EL, AND LYNCH SV. 2015. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One.10(2):e0117617.

STAEHELIN C, FORSBERG LS, D'HAEZE W, GAO MY, CARLSON RW, XIE ZP, PELLOCK BJ, JONES KM, WALKER GC, STREIT WR, AND BROUGHTON WJ. 2006. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. J Bacteriol. 188(17):6168-78.

SURYAKALA, D., MAHESWARIDEVI, P. U. & LAKSHMI, K. V. 2004. Chemical characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent pseudomonads. Indian Journal of Microbiology, 44(2),105-108.

TANYA V. IVASHINA AND VLADIMIR N. KSENZENKO. 2012. Exopolysaccharide Biosynthesis in Rhizobium leguminosarum: From Genes to Functions, The Complex World of Polysaccharides, Desiree Nedra Karunaratne, IntechOpen, DOI: 10.5772/51202.

WANG Z, ZHONG T, CHEN X, YANG B, DU M, WANG K, ZALAN Z, AND KAN J. 2021. Potential of Volatile Organic Compounds Emitted by Pseudomonas fluorescens ZX as Biological Fumigants to Control Citrus Green Mold Decay at Postharvest. J Agric Food Chem. 69(7):2087-2098.

WALDEISEN JR, WANG T, MITRA D, AND LEE LP. 2011. A Real-Time PCR Antibiogram for Drug-Resistant Sepsis. PLOS ONE 6(12): e28528.

WOLDE OLDE-MESKEL E, TEREFEWORK Z, FROSTEGARD A, AND LINDSTROM K. 2005. Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol.55(Pt 4):1439-1452.

ZEVENHUIZEN LP, AND SCHOLTEN-KOERSWLMAN HJ. 1979. Surface carbohydrates of Rhizobium. I. Beta-1, 2-glucans. Antonie Van Leeuwenhoek. 45(2):165-75.

 

Published

2022-01-04 — Updated on 2021-12-20

How to Cite

Karzan K. Mahmud, & Aras Muhammad Khudhur. (2021). Transferring of Exopolysaccharide (EPS) Gene Cluster from Rhizobium leguminosarum to Pseudomonas fluorescens by Horizontal Gene Transfer Techniques. Zanco Journal of Pure and Applied Sciences, 33(6), 100–111. https://doi.org/10.21271/ZJPAS.33.6.10

Issue

Section

Agricultural and Environmental Researches