
 

 

 

 

                                                                                                      ZANCO Journal of Pure and Applied Sciences  
                                                                                                             The official scientific journal of Salahaddin University-Erbil   

                                                                         https://zancojournals.su.edu.krd/index.php/JPAS                    

                                                                                                                                                               
                                                                                                             ISSN (print ):2218-0230, ISSN (online): 2412-3986, DOI: http://dx.doi.org/10.21271/zjpas 

  RESEARCH PAPER 
 

Bubble Collapse Inside Rigid Ellipsoid Using Boundary Integral Method in 

Axisymmetric Configuration. 
 

Hawchin Jabar Ahmed
1
, Kawa M.A. Manmi

 2 

1Department of Mathematics, Faculty of Science, Soran University, Soran -Erbil, Kurdistan Region, Iraq. 

2Department of Mathematics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq. 

 
A B S T R A C T: 

A high-speed liquid jet forms toward the closest side of the boundary when a bubble collapses near a solid boundary. This is 

associated with important applications in cleaning microdevices, chemical reactions (sonochemistry) and biomedical ultrasound. 

In this work, bubble expansion, collapse and jet formation inside a rigid ellipsoid boundary have been investigated using the 

boundary integral method (BIM) in an axisymmetric configuration. We assume that the fluid flows satisfy the potential flow 

theory and the bubble is initially spherical with high gas pressure. Then the bubble growth and subsequently collapse non-

spherically. Eventually high-speed liquid jet forms toward the nearby rigid boundary(s).  The numerical results validated with the 

Rayleigh-Plesset equation for a spherical bubble oscillation at infinite fluid for several cycles as well as self-validating with 

considering image and without image method for using Green’s function in the BIM.  Then, three different vertical standoff 

distances from the center of the bubble to the boundary of the ellipsoid have been considered to investigate the bubble motion 

behavior including jet velocity, jet width, Kelvin impulse and centroid movement. It was concluded that the standoff distances and 

ellipsoid radius were significant factors on the bubble behaviour. 
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1. INTRODUCTION: 

In many manmade and natural systems, cavitation 

phenomenon is occurred which is defined as the 

formation, growth and collapse of bubbles in a 

flowing liquid, in a region where the pressure of 

the liquid suddenly drops below a threshold value 

(Castro, 2019; Aziz, 2019; Mahmud, 2020). As 

the fluid pressure drops below to vapor pressure, 

cavities begin to develop. Subsequently, the 

pressure is further reduced, causing vapor bubbles 

to expand simultaneously with the flow. The 

sudden expansion and collapse of these bubbles 

produce extreme pressure that hit the near surfaces 

and cause damage (Mahmud, 2020; Rayleigh, 

1917; Nadir and MANMI, 2020) and erosion. On 

other hand, cavitation has increasingly found 

many beneficial applications in science and eng-

ineering including medical science, mechanical 

engineering, chemical engineering, ocean engi-

neering, shipbuilding engineering, nanomaterial 

engineering, environmental engineering, nuclear 

engineering, and biomedical engineering (Manmi, 

2015; Aziz, 2019; Mahmud, 2020; Liu, 2018).  

Usually, bubble tends to oscillate spherically due 

to surface tension, however, when it is nearby 

structure, it become non-spherical and eventually 

high speed liquid jet forms toward the structure 

which is believed it has main role for surface 

damaging or removed particles of the surface. The 

oscillations of a single bubble have been widely 

studied experimentally and mathematically in the 

literature to understand the mechanism of liquid 

jet formation near simple or/and complex boun-

daries or structures. For example, experimental 

attempts; such as (Lindau and Lauterborn, 2003) 

investigated jet formation near horizontal wall, 

(Cui et al., 2021; Cui et al., 2022) considered 

bubble dynamics near rigid incomplete plate, 

behavior of a laser-induced cavitation bubble near 
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two perpendicular rigid walls by (Brujan et al., 

2018), (Su et al., 2022) studied the complex 

dynamics of underwater explosion bubble bet-

ween two parallel plates, and (Fourar and Bories, 

1995) considered of air-water two-phase flow 

through narrow channel. 

Mathematical modeling is another alternative 

approach to study the phenomena analytically and 

numerically. Rayleigh-Plesset equation (RPE) is 

the first and foremost mathematical model for 

describing nonlinear response of a gas bubble 

motion, which is a nonlinear ordinary differential 

equation based on mass and momentum conse-

rvation under the assumption of spherical symm-

etry (Leighton, 2007; Lin et al., 2002), in an 

infinite incompressible, liquid medium with no 

gravity, surface tension, viscosity, heat or mass 

transfer (Plesset and Prosperetti, 1977; Rayleigh, 

1917; Plesset, 1954; Sarkar, 2019; Nadir and 

MANMI, 2020). 

In 1956, Keller and Kolodner (Keller and Kolo-

dner, 1956) extended Rayleigh-Plesset formula for 

the Keller-Miksis equation (KME) of the oscill-

ations of a spherical bubble in a compressible 

liquid (Lauterborn and Kurz, 2010). The major 

difference between the KME and RPE is that the 

KMF does not assume the liquid to be income-

epressible (Keller and Miksis, 1980). Several 

extension of RPE and KME in different scenarios 

have been proposed for instance, bubble oscill-

ation in an elastic solid (Wang, 2017; Doinikov 

and Marmottant, 2018; Doinikov et al., 2018; 

Doinikov et al., 2019, Wang et al., 2018), modi-

fied the conventional Rayleigh–Plesset (Soliman 

et al., 2010; Klaseboer and Khoo, 2006; 

Alehossein and Qin, 2007; Tey et al., 2020). 

On the other hand, numerical attempts such as 

(Zhang et al., 2013) were investigated bubble 

dynamics between two boundaries, experimental 

and numerical model of bubble oscillation 

between rigid walls by (Ogasawara et al., 2015), 

experimental and numerical investigation of 

bubble oscillation in a narrow tube (Ni et al., 

2012), bubble oscillation inside a vertical rigid 

cylinder studied by (Mehran et al., 2010 ), bubble 

oscillation between two parallel heated walls (Liu 

et al., 2014), and bubble dynamics near a plate 

with a circular aperture in a vertical cylinder 

(Dawoodian et al., 2015). 

The boundary integral method (BIM) is an elegant 

technique which reduces the dimensionality of 

many numerical problems by one. This is 

accomplished by transforming the differential 

equations integrally, which moves the evaluation 

from the computing domain's volume to its 

surface (Manmi 2015; Klaseboer et al., 2009; 

Blake et al., 1986; Blake et al., 1987; Chahine and 

Perdue, 1990). Acoustic bubble dynamics were 

simulated using an axisymmetric BIM model for a 

bubble in an infinite liquid and near a boundary 

subject to ultrasound propagating in the direction 

perpendicular to the boundary (Manmi, 2015). 

The boundary element approach is essentially a 

method for solving partial differential equations 

(PDEs) and can only be used when the physical 

issue can be represented as such, much like the 

more well-known finite element method (FEM) 

and finite difference method (FDM). The bou-

ndary element approach is a numerical method, 

like the other methods described. As a result, the 

numerical analysis community places a high prio-

rity on research into this technique (Aziz, 2019; 

Manmi, 2015). 

Recently, bubble oscillations inside a spherical 

liquid filled cavity surrounded by an elastic 

spherical medium have been attention by many 

researchers including (Wang, 2017; Wang et al., 

2018; Doinikov et al., 2019; Zhang et al., 2022). 

The phenomena motivated by application, in 

biology (Jensen et al., 2016), dynamics of porous 

media (Vincent et al., 2014), geology (Marti et al., 

2012) and sap cavitation occurs when the tree’s 

pumping system is operating under a negative 

pressure less than the threshold pressure (Cochard, 

2006). The research attention was focused on the 

boundary, which is completely spherical, and the 

bubble located at the center of the sphere. Further, 

their studies were theoretical for linear and non-

linear bubble oscillations. However, our numerical 

model is for bubble dynamics inside a rigid 

ellipsoid with a center not located at the origin. 

We used BIM to investigate bubble collapse 

inside a rigid ellipsoid at different initial incep-

tions. When bubble growth near the rigid 

boundary subsequently collapse no-spherical and 

in most cases, high liquid jet forms toward the 

rigid boundary. The characteristics of the liquid jet 

depend on the type and shape of the rigid bou-

ndary as well as the distance from the bubble 

center to the rigid boundary. Eventually, when the 

jet develops the bubble becomes toroidal and high 

liquid jet might hit the surface of the boundary. It 

could damage the surface, which might lead to 
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destructor removing the particles from the surface 

of the boundary. 

The rest of the paper is organized as follows: In 

Section 2, mathematical and physical models are 

presented. Section 3 describes kinematic and dyn-

amic boundary conditions. Dimensionless varia-

bles in Section 4. Section 5 numerical model. Val-

idation of the numerical model in Section 6. In 

Section 7, results are presented and discussed and 

finally, in Section 8, conclusions are given. 

 

2. Mathematical and Physical Model 

Consider a bubble oscillation in a rigid ellipsoid 

filled with liquid. Suppose that the boundary of 

the liquid domain   is denoted by  ,         

, where    and    (see red lines in Figure 1) are 

the bubble surface and rigid ellipsoid boundaries 

respectively. The schematic of the model in (r, z) 

coordinates systems is illustrated in Figure 1, 

when the axis of symmetry is along z-axis. We 

assume that initially a spherical bubble with center 

at (0, z) and radius     oscillates inside a rigid 

ellipsoid with center at the origin, major radius  

     and minor radius     . The distance between 

the center of the initial bubble and the rigid 

boundary is denoted by   . Assume that the fluid 

is inviscid it means that the fluids with zero 

viscosity, also the fluid is incompressible by 

continuity equation        , where   is grad-

ient and   is the fluid velocity, and the fluid flow 

is irrotational (     ). So, the flow is 

potential where the fluid velocity   defined as the 

gradient of the velocity potential  ,       
which satisfies the Laplace’s equation      . 

Using the second Green identity, the velocity 

potential thus transformed into the boundary 

integral equation as follows (Manmi, 2015; Aziz, 

2019; Mahmud, 2020; Liu, 2018; Curtiss, 2009), 

 

 ( ) ( )  ∫ (
  ( )

  
 (   )   ( )

  (   )

  
)  ( ) 

 

                                     ( ) 

where    is the field point and   is the source point,  ( ) is the solid angle at the field vector    and   is the 

outward unit normal to the boundaries S. The solid angle is given by, 

 ( )  {
                          
                             

                                                                        ( ) 

 Hence this Green’s function,  (   )  can be defined as, 

 (   )  
 

|   |
                                                                                             ( ) 

Using cylindrical coordinates with   (     ) and   (        ), the distance between the points q and p 

is given as, 

|   |  √              (    )  (    )                                          ( ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Schematic of a bubble dynamics inside rigid ellipsoid filled with the liquid. 
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3. Kinematic and Dynamic Boundary 

Conditions 

The kinematic boundary conditions on the bubble 

surface require a liquid particle to remain on the 

bubble surface, i.e. 
  

  
                                                                ( ) 

On the rigid boundaries, 

                                                                  ( )  

where,   is a local velocity vector of the rigid 

surface. For an infinite plane solid wall the    , 

and condition (6) is met exactly by reflection the 

flow field and the boundaries in the wall and by 

removing the wall (Wang and Manmi,  2014; 

Aziz, 2019 ), 

                                                                    ( ) 

The momentum conservation considering the 

irrationality and incompressibility provides the 

Bernoulli’s equation is defined as follows 

(Batchelor, 2000; Cengel and Cimbala, 2014),  
  

  
 

 

 
|  |  

  

 
     ( )                             ( )   

where,   and    are density and pressure of the 

liquid respectively,  and  ( ) is arbitrary function 

of   .  Far-field boundary conditions are used to 

determine the value of  ( ), we assume that the 

boundary conditions at infinity are, 

                                                                          ( ) 
  

                                                                       (  ) 

use equations (9) and (10) in equation (8), we 

have  ( )  
  

 
,  substituting  ( ) in equation (8) 

we get, 
  

  
 

 

 
|  |  

  

 
    

  

 
                         (  ) 

The dynamic boundary condition on the bubble 

surface is obtained from balancing the bubble 

surface pressure including surface tension effects 

for an inviscid fluid as follows (Aziz, 2019; 

Mahmud, 2020), 

                                                                (  ) 

where    is the liquid pressure on the bubble 

surface,    is the pressure inside bubble,   is the 

surface tension coefficient on the flow domain, 

and        is the mean curvature of the bubble 

surface. Substituting equation (12) into equation 

(11) we obtain, 

 
  

  
 

 

 
 |  |           (   )     (  ) 

Now substituting the material derivative of  , 
  

  
 

  

  
                                                     (  ) 

into equation (13) we get, 

 
  

  
 

 

 
           (   )            (  ) 

It is supposed that the pressure inside the bubble 

   is uniform and the bubble contains non-

condensable gas and condensable water vapor. 

The non-condensable gas is supposed to satisfy 

the polytropic law. The vapor pressure and the gas 

pressure are considered dilute enough so their 

pressures can be expressed by Dalton’s law for 

mixtures of ideal gases (Brennen, 2014), 

                                                                  (  ) 

where    is the condensable vapor pressure and    

is partial pressure of the gas, 

     (
  

 
*

 

                                                       (  ) 

Thus, the pressure    inside the bubble can be 

related to the bubble volume   as follows, 

          (
  

 
*

 

                                           (  ) 

 

Here    denotes the initial gas pressure inside the 

bubble,   is volume of the bubble and where 

  
  

  
, where    is specific heat at constant 

pressure and     is specific heat at constant 

volume. Using equation (18) into equation (15) we 

yield,  

 
  

  
       

 

 
 |  |        (   )    (

  

 
*

 

                                       (  ) 

The dynamic boundary condition on the bubble surface can be written as, 
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4. Dimensionless Variables 

The variables are normalized using the initial 

radius of the bubble   , and          as 

follows (Wang, 2013; Wang and Manmi, 2014; 

Manmi, 2015), 

 

 

   
 

  

√
  

 
                

 

  
                                                               (  ) 

   
 

  
                                                                                                   (  ) 

First, dynamic boundary conditions (20) can written as, 
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(   )  
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                                      (  ) 

Now, use equations (21) and (22) into equation (23) we have, 
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√
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Where,  
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                                                                                 (   ) 
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                                                                                (   ) 

   √
    

  
                                                                                (   ) 

      
 

    
                                                                                   (   ) 

                                                                                              (   ) 

     
  

  
                                                                                      (   ) 

Thus, with assumptions given in equation (25), equation (24) becomes, 

   

   
   

 

 
|    |

    
           (

  

 
*

 

                                     (  ) 

To normalize kinematic boundary condition (5), we start with, 

  

  
 

  

   
 
   
  

 
 

  

√
  

 

  

   
 √

  

 

   

   
                                                 (  ) 

So, we have,  

   

   
   (

 

  

√
  

 
)                                                                          (  ) 

Finally, we have the complete dimensionless bubble dynamic model provided as follow: 
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with initial conditions, 

                                                                                                                                
                                                                                                                                  

 

 

 

5. Numerical Model 

Assuming the flow to be axisymmetric, as is the 

case for a vertical bubble column perpendicular to 

an initially horizontal surface,    can be arbitrarily 

taken as 0. So   (       ) could be any point on 

the boundaries and   (     ) is the source 

point. The free space Green’s funding we have 

(Lind and Phillips, 2010; Taib, 1985), 

 

 (   )  
 

((    )  (    )      (   (
 

 ⁄ ))
 
)
 

 ⁄
                                            (  ) 

and similarly, 

  

 (
 

|   |
*   

(( ( )    )        
 (  ⁄ )  ( ( )    ))

((    )  (    )      (   (
 

 ⁄ ))
 
)

 
 ⁄
                                       (  ) 

 

The surfaces   encasing each fluid region are parameterized with respect to (   ) as   ( ( )    ( )). All 

derivatives with respect to   are taken as zero due to the axisymmetric model. Equation (1) can be simplified 

into integrals over  . Consider first integrals of the form, 

∫
 

|   |
  ( )

 

                                                                                    (  ) 

Hence the surface integral equation (32) becomes, 

∫
 

|   |
  ( )

 

 ∫

  ( ) *(
  ( )
  

*
 

 (
  ( )
  

*
 

+

 
 ⁄

[( ( )    )  ( ( )    ) ]
 

 ⁄

 

 

  ( )                            (  ) 

 

Where,                ( )  
  ( )  

( ( )   )
  ( ( )   )

 
                                                                                     (  ) 

and where  ( ) is the complete elliptic integral of the first kind. Now consider the second integrals in 

equation (1) of the form, 

 

∫
 

  
(

 

|   |
*   ( )

 

                                                                                     (  ) 

 

Hence we can write equation (35) as, 
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   ∫
 ( )

[( ( )    )  ( ( )    ) ]
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  ( )
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  )

 ( )

    ( )
 

 

  ( )

  ( )

  
   ( )+                                                            (  ) 

Where,  ( ) and  ( ) are the complete elliptic integrals of the first and second kind respectively. These 

integrals are approximated by,  

 ( )   ( )   ( )                                                                             (  ) 

 ( )   ( )   ( )                                                                              (  ) 

Where,                             ( )                                                                                      (  ) 

 

 

 

 and       and   are tabulated polynomials 

(Curtiss, 2009; Taib, 1985). 

The numerical model is based on the BIM, we 

need consider only half plane due to symmetricity.  

The bubble and rigid ellipsoid boundaries are 

discretized into     and    points as can been seen 

in Figure 1. Hence, The surface is replaced by a 

set of   linear segments   , with the potential and 

its normal derivative constant on each segment. 

The boundary integral equation is replaced by its 

collocation form using the midpoint of each linear 

segment, 

 

     ∑  

 

   

∫
 

  
(

 

|     |
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  (  )  ∑
 

  
(  )
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|     |
)

  

  (  )                  (  ) 

If we denoted 
   

  
 by   ,    and    are assumed to be single valued at the end points of the linear segments 

which approximate the surface. If the segment is parameterized by   in the range (0,1) we can define, 

  ( )         

  ( )               
}                                                                          (  ) 

and use the isoperimetric approximations for both the surface and the functions. On segment    we have,  

 ( )        ( )      ( )

 ( )        ( )      ( )

 ( )        ( )      ( )

 ( )        ( )      ( ) }
 
 

 
 

                                                      (  ) 

The collocation points are moved to the end points of each segment, yielding     equations in the     

unknowns. The integrals on each segment can be written, 

∫   (
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( (       ))   (       ) ( )+                                                                       (  ) 

Therefore, in this model discretized from equation (1) with collocation points in the middle of each segment 

yields the following set of linear equations, 

     ∑   

 

   

   ∑   

 

   

                                                                             (  ) 

 

We can write equation (40) in index form as, 

     ∑ ̂  

 

   

   ∑   

 

   

                                                                             (  ) 

 

The terms of the matrices   and   in equation 

(48) are calculated numerically. Normally Gauss 

Legendre quadrature is used, unless the colloc-

ation point    is within the segment   , or is one 

of it endpoints, in which case the integrand is 

singular and must be treated specially. The 

singular integrals are calculated by subtracting the 

logarithmic term to remove the singularity. The 

integrals are approximated using a 6-point Gau-

ssian quadrature rule. In this scheme the singular 

integral is transformed into two integrals, one 

integral contains no singularity which can be 

integrated by standard Gauss Legendre quadrature 

while the other integral contains an explicit loga-

rithmic singularity. The integral containing the 

explicit logarithmic singularity can be integrated 

by a special quadrature scheme tabulated by (Str-

oud and Secrest, 1966.) for the integral, 

 

 

 

∫  ( )   (
 

 
*   

 

 

                                                                     (  ) 

 

We can write equation (48) as, 

                                                                             (  ) 
 

 

 

Where   and   are the     influence coeffi-

cient matrices. It is noted that the diagonal elem-

ents of the influence coefficient matrices are inte-

grated analytically and the non-diagonal elements 

are calculated numerically using six-point Gau-

ssian quadrature. In case bubble in an infinite 

domain, the values of   on the bubble surface are 

unknown, while the values of   are known, equ-

ation (50) can be re-writing as,  

   (    )                                                   (  ) 

where    is an     identity matrix. In case 

bubble near rigid boundary, the values of   on the 

bubble surface and the values of   on the rigid 

surfaces are unknown, while the values of   on 

the rigid surfaces are equal to zero and the values 

of   on the bubble surface are known, equation 

(50) can be re-writing as (Aziz, 2019; Mahmud, 

2020; Aziz et al., 2019), 

 

[
       

       
] [

  

  
]  [

       

       
] *

  

  
+     (  ) 

Where the subscripts   and   are related to the 

nodes on the bubble surface and the boundary of 

the ellipsoid respectively. By solving the linear 

system in (52) we get    and   . The tangtial 

velocity of the bubble surface can be obtained by 

using second order spline interpolation. Therefore, 

we can get velocity on the bubble surface by 

combining normal and tangential components. 

Then, the position of the bubble surface and the 

velocity potential on it at the next time step 

        are obtained by time integration of equ-
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ations (26) and (28) using fourth-order Runge-

Kutta (RK4) scheme. A variable time-step size 
    is chosen as follows to save the central 

processing unit (CPU) time,

 

 

    
   

   |  
 
 

|    |    
           (

  

 )
 

|

                                (  ) 

 

Where     is a constant. The updated bubble surfaces were smoothed by using cubic spline (Curtiss, 2009; 

Shervani-Tabar, 1995). 

 

6. Validations of the Numerical Model  

The numerical model was compared with the RPE 

for a bubble in infinite fluid by considering 

different radiuses of the ellipsoid (   
 

           ). We considered that it was located 

at the center of the ellipsoid. In addition, self-

validation has been performed by considering the 

model with and without the image method. 

6.1 Comparison with RPE   

In this section, the numerical results in the BIM  

for bubble oscillating inside rigid sphere with 

different non-dimensional radius (   
 

           )  compared with the numerical 

solution of the Rayleigh-Plesset equation (RPE) 

for a bubble at an infinite domain. The non-

dimensionless equation can be express as (Castro, 

2019; Brennen, 2014; Doherty, 2020; Aziz, 2019), 

   ̈  
 

 
( ̇ )

 
    

   

  
 ̇  

   

  
                                                     (  ) 

Where,     is radius of the bubble as a function of 

time,  ̇  is velocity, 

 

   
  

  √   
    

 

    
                                                                         (  ) 

 

RPE is the nonlinear second order differential 

equation that can not be solved analytically. 

However, it can be solved by using an efficient 

numerical approach such as fourth order Range-

Kutta scheme (RK4). The characteristic 

parameters are chosen as                   
          ,    ,           ,       and 

      where,    and    are the number of 

nodes on the bubble surface  and rigid wall 

boundaries respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the bubble radius oscillations for 

at least three cycles for a bubble inside a rigid 

ellipsoid with different radius (200, solid green 

line), (400, dot dash blue line), (600, dash pink 

line) and ( , dot black line) respectively as well 

as result of the RPE (solid red line). We can 

clearly observe that the numerical results approach 

to the result of the RPE when the ellipsoid radius 

increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Comparison bubble 

radius with spherical wall radius. The parameters used for the cases are,                                      

and    . 
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6.2 Comparison with the Image Method   

Suppose that a gas bubble oscillates near a rigid 

horizontal wall, as show in Figure (3), where the 

distance from center of the bubble to the rigid 

boundary denoted by   .  In boundary integral 

equation (1), if we choose Green’s function as 

follows (Shervani-Tabar, 1995; Lind, 2010; 

Walters and Phillips, 2016), 

 (   )  
 

|   |
 

 

|    |
                            (  ) 

where,    is the image of   on the rigid horizontal 

wall.  The boundary of the 

integral in equation (1) reduces only into    as 
  

  
 

on the wall is zero. Therefore, the calculations 

(integrals) only on the bubble surface needed, 

eventually smaller liner system (52) need to be 

solved. However, finding such a Green’s function 

like (56) for complex or non-straight boundary is 

challenging task. Therefore, direct method 

(without image,  (   )  
 

|   |
) can be used 

which usually more calculation is needed and 

eventually larger linear system must be solved.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Schematic of a bubble motion near rigid wall using image method. 

 

Here a typical case was considered to compare the 

results with and without image. We consider a 

bubble near rigid horizontal wall with        . 

The characteristic parameters were         
   ,     ,          ,          ,       

and       . Where,    and    are the number 

of nodes on the bubble and rigid wall boundaries 

respectively. Figure 4 shows bubble shape at 

different instances obtained in the BIM with 

considering image method (dash red line) and 

without image method (solid black line). The 

bubble expands spherically upon reach maximum 

volume. Slight flatten can be observed on the top 

side of the bubble surface due to blockage by the 

wall (see Figure 4a). The bubble shapes at all 

instances almost identical in both cases. However, 

there is slight delay (about 4%) in terms of time in 

without image method and this delay is developed 

with the time. It is clear that the bubble shapes are 

well agreed in both simulations in all instances.

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4: Bubble shape comparison in the BIM with considered image (dash red line) and without image (solid black line) at 

different instance. The parameters are chosen,            ,     ,           ,           ,       and       . 
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7. Results and Discussions 

In this section, bubble oscillations inside different 

shapes and sizes of spherical wall considered. In 

all considered cases in this section, the following 

parameters are kept fixed as:            ,  

   ,           ,          ,       and 

      . Where,    and    are the number of 

nodes on the bubble surface and rigid ellipsoid 

boundaries respectively. In all considered cases 

maximum jet velocity       at the collapse phase 

(which is velocity of bubble surface at node 1), 

Kelvin impulse   , which is defined as, 

   ∫       
  

                                                                                           (  ) 

 and the centroid motion of the bubble along z-axis can be defined as, 

   
∑     

 
   

∑   
 
   

                                                                                           (  ) 

Where the total number of the segments on the bubble surface is  ,    is the area of the sector and   is the 

segment index on the bubble surface. 

 

7.1 Bubble Inside a Rigid Sphere 

Here, bubble dynamics inside rigid completely 

sphere (    
     

  ) has been investigated, 

when the center of the bubble initially shifted 

vertically by three different values (     
          ) from the origin.  Figure 5 shows the 

bubble surface shape at maximum volume (Figure 

5a) and at the final stage of the first collapse phase 

(Figure 5b) for all three cases. Clearly, the bubble 

 

shapes remain spherical in the expansion phase 

(Figure 5a). In contrast, a high-speed liquid jet 

develops along the axis of symmetry toward the 

closest side of the sphere’s surface at the end of 

the collapse phase (Figure 5b) in all considered 

   . However, the jet width (shape) increases with 

   . Further, the times at maximum value and jet 

impact have not changed significantly with     . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Bubble shapes at maximum volume and jet impact at the final stage of the collapse phase for different values of     

(blue dash line        ), (green soiled line        ), (magenta dot line      ), parameters are used                  
                             and    . 

 

Table 1 provides jet velocity      , Kelvin impulse 

  , the centroid movement    
 versus     for the 

considered cases in Figure 5 at the final step of the 

simulation. The jet velocity, centroid movement 

and Kelvin impulse are increase with    . Jet 

velocity about (13% and 17% ) increase when     

about (20% and 25%)  increases. Therefore, jet 

velocity is linear proportional with     . 

 
Table 1 Provides jet velocity, Kelvin impulse and the 

centroid movement for the cases in Figure 5. 

          |  |    
 

1.2 6.528929 0.022078 1.383338 

1.5 7.489079 0.028394 1.716181 

2 9.069419 0.041748 2.275916 

 

7.2 Bubble Dynamics Inside a Rigid Ellipsoid  

Here, we investigated a bubble collapse inside a 

rigid ellipsoid when the center of the bubble 

initially shifted vertically by three different values 

(               ) from the origin. Two cases 

are considered. One is bubble dynamics inside a 

rigid ellipsoid with its major axis along a 
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horizontal line, while the second is that its major 

axis is along a vertical line. The major radius 

(    ) and minor radius (   ) of the ellipsoid are 

10 and 5, respectively. All the other parameters 

are kept fixed as in Figure 5. Figures 6a and 6b 

illustrate the bubble shape at the maximum 

volume and jet impact at the final stage, 

respectively. Therefore, at the final stage of the 

first collapse phase, the jet width (shape) increases 

with    , the jet width is increased by (about 20% 

and 40%) when the bubble shifts by 1.5 and 2, 

respectively. Figures 6c and 6d show the 

numerical results at the maximum volume and jet 

impact when bubble dynamics inside a vertical 

ellipse. Because the jet is narrow, we can see 

different and the remaining parameters are the 

same as in Figures 6a and 6b.

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bubble shapes at maximum volume and jet impact at final stage of the collapse phase for different value of     (blue 

dash dot line        ), (green dash line        ) ,(orang soiled line      ) for Figures a and b, and (red dash line     
   ), (purple dash dot line        ) ,(green soiled line      ) for Figures c and d, other parameters are used           
                                    and    .  

 

 

Tables 2 and 3 provide jet velocity      , Kelvin 

impulse   , the centroid movement    
 versus     

for the considered cases in Figure 6 at the final 

step of the simulation. In Table 2 the jet velocity, 

Kelvin impulse and centroid movement are 

increase with    . Jet velocity, Kelvin impulse and 

centroid movement about (23% and 6%), (24% 

and 34 %) and (20% and  25%) are increased 

respectively, when     about (20% and 25%)  

increases. Therefore, in Table 3 the Kelvin 

impulse and centroid movement are increase with 

   , while the jet velocity decreases when     is 

increased. Kelvin impulse and centroid movement 

approximately (10% and 6%) and (12% and 22%) 

increase respectively, when     approximately 

(20% and 25%) increases. In both cases, the 

Kelvin impulse and centroid movement are 

increased, while the jet velocity is changed. 
           

Table 2 Provides jet velocity, Kelvin impulse and the 

centroid movement for the cases in Figure 6b. 

          |  |    
 

1.2 4.693451 0.013913 1.338795 

1.5 6.078141 0.018427 1.665488 

2 6.479898 0.027984 2.217930 
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Table 3 Provides jet velocity, Kelvin impulse and the 

centroid movement for the cases in Figure 6d. 

          |  |    
 

1.2 6.094188 0.019452 1.464482 

1.5 2.314295 0.021658 1.670291 

2 0.806709 0.022980 2.152943 

 

8. Summary and Conclusions 

The dynamics of a gas bubble inside a rigid sphere 

and rigid ellipsoid have been investigated 

numerically using the boundary integral method in 

axisymmetric configuration. The numerical model 

was validated by RPE and self-validated with 

considering image and without image for choosing 

Green’s function in the BIM. In all numerical 

results, the initial bubble center shifted to the top 

along the axis of symmetry by (   =1.2, 1.5 and 

2) for three different shapes of boundaries, which 

are completely sphere (    
     

  ), ellip-

soid with major axis along horizontal line (     

major radius,     minor radius) and ellipsoid with 

major axis along vertical line (     major radius, 

    minor radius) respectively. In all considered 

cases, we noticed that velocity and width of the jet 

at final stage, magnitude kelvin impulse and 

centroid movement increases proportionally with 

   . However, when the bubble collapse inside 

ellipsoid with major axis along vertical line jet 

velocity decreases with    . 
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