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A B S T R A C T: 
In this paper, the equation of spherical bubble oscillations in Newtonian and viscous fluid with considering compressible fluid 

flow in a spherical liquid-filled elastic solid was developed. The exact solution of the linearisation and the numerical solution of 

the equation has been derived and compared. Then numerical calculations are performed to investigate the effects of 

compressibility parameter    for gas and acoustic bubbles. the amplitude of bubble radius oscillations increases with    and the 

effects of    is accumulating with time. Further, the discrepancy between the exact and numerical solutions increases with time 

when        . However, the difference was not changed when the    is smaller than     . Dual frequency is also considered in 

the acoustic environment. 
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1. INTRODUCTION: 

 

Cavitation in fluid dynamics is a complicated 

phenomenon that often occurs in many natural and 

manmade processes induced by rapid changes in 

flux situations. For example when a fluid passes 

through a cross section reduction (like in a valve) 

or after a sudden increase in flow velocity 

imposed by, for instance, a ship propeller (Franc 

and Michel, 2006). Cavitation traditionally was  

regarded as an unwanted phenomenon particularly 

in the machinery engines as it produces many 

negative effects including vibration, noise and 

efficiency reduction (Bosschers, 2018, Korkut and 

Atlar, 2012, Franc and Michel, 2006).  

 

 

 

 

 

 

 

 

 

However, in the last three decades several 

applications of cavitation have been proposed. 

These include the production of ground 

purification methods, biomedical treatments such 

as the disintegration of kidney stones or 

elimination of microorganisms (Duryea et al., 

2015, Duryea et al., 2010),and chemical processes 

such as sonochemistry and sonoluminescence 

(Nigmatulin et al., 1999, Crum et al., 1998, Yusof 

et al., 2022, Zhou et al., 2013). Although, in most 

situations’ cavitation represents a cloud of tiny 

bubbles, understanding a single bubble dynamic is 

essential and crucial. On the other hand, bubble 

tend to spherical shape entirely or partially due to 

surface tension force. Therefore, understanding 

single spherical bubble dynamics is fundamental 

area for cavitation phenomena.  

The first mathematical model of the 

spherical bubble was formulated by Rayleigh in 

1917 (Rayleigh, 1917). The model is based on the 

continuity equation with neglects viscosity and 

surface tension effects. However, these 
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assumptions might be only validated in a certain 

situation for instance in bubbles with a radius of 

    . Plesset developed Rayleigh’s work in 1949 

to include some other effects, such as viscosity 

and surface tension effects in an incompressible 

fluid (Plesset and Prosperetti, 1977). In 1956, 

Keller and Kolodner (Keller and Kolodner, 1956) 

extended Rayleigh-Plesset formula for the Keller-

Miksis equation of the oscillations of a spherical 

bubble in a compressible liquid (Lauterborn and 

Kurz, 2010). 

Most recently, gas and acoustic bubble 

oscillations (dynamics) inside a liquid-filled 

elastic solid have been great attention by 

researchers due to applications in plants (Wang, 

2017, Cochard, 2006, Tyree and Sperry, 1989, 

Stroock et al., 2014, Larter et al., 2015, Jensen et 

al., 2016). By considering the interaction between 

the bubble gas expansion/collapse, the liquid flow 

produced, and the elastic confinement deformation 

(Liu et al., 2018). They studied shape modes of 

non-spherical oscillations. The equations of strain 

and stress fields in the solid medium around it 

were considered by (Doinikov et al., 2018a). The 

major process of attenuation, according to 

(Drysdale et al., 2017), is related to wave 

propagation in solids. 

The remainder of the article is organized as 

follows: In section 2 physical and mathematical 

model for spherical bubble oscillations inside 

spherical elastic solid is derived. The nonlinear 

governing equation of section 2 for small 

amplitude of oscillations is linearized and natural 

frequency for the linearized equation is illustrated 

in section 3. In section 4, the nondimensional 

variables are defined to dimensionless the 

governing equations. Section 5 is focused on the 

numerical results of the gas/ acoustic bubble 

oscillations a spherical liquid-filled elastic solid.  

The conclusions are summarized in section 6.   

 

2. PHYSICAL AND MATHEMATICAL 

MODEL 

In this paper, we assume that a pre-existing 

spherical bubble with a radius    in a Newtonian 

liquid is confined within a spherical elastic solid 

with a radius    . The bubble starts to oscillate 

spherically when the gas pressure inside the 

bubble is not equal to the liquid pressure. To 

formulate a simplified mathematical model which 

is based on the mass and momentum 

conservations with neglecting mass and heat 

transfer along the interfaces, the instantaneous 

radius for bubble and elastic solid are denoted by 

     and      , respectively, as it can be seen in 

Figure 1, where   is time.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Schematic of the spherical bubble in a liquid 

confined with spherical elastic solid. The radius of the 

bubble is      and the elastic cavity is        

 

The mass conservation with the combination of 

the material derivative (Acheson, 1991, Batchelor 

and Batchelor, 2000, Yasui, 2018) of the liquid 

flow is written as 
  

  
        

  

  
             

              
  

  
                              (1) 

where   and   are density and velocity field of the 

liquid and                    in Cartesian 

co-ordinates (x, y, z). 

In the spherical coordinate         with    
         , equation (1) becomes  

  

  
      

  

  
 

 

  

      

  
 

 
 

       

 

  
           

 

       

   

   
      (2) 

It is assumed that the bubble and the elastic cavity 

are perfectly spherically symmetric. Therefore, the 

partial derivative of any variable according to the  

  and   coordinates is equal to zero. We get  
 

  

 (   )

  
  

  

  
  

  

   

   

  
                (3) 

Where    is pressure of the liquid,  
  

  
 

  

   

   

  
 

and 
  

  
    is the speed of sound in the liquid. 

We get 
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The speed of sound and the density of the typical 

liquid (water) can be approximated by 1500      
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and 1000      , respectively. Therefore, 

                    . Hence, the right side 

of the equation of (4) is very small and could be 

negligible. However, this small term could be 

significant in a certain regime. Based on this, we 

assume that 
 

   

  

  
           where   ≪ 1. 

Now equation (4) reduces to 
 

  

 (   )

  
                             (5) 

The ordinary differential equation (5) is separable; 

it can be solved simply by taking integral for both 

sides, 

      
   

 
                          (6) 

To find the arbitrary constant  , we use the 

instantaneous bubble radius at time   which means 

       and        ̇    at the bubble 

surface 

 

       ̇  
   

 
                          (7) 

By substituting   in (6), we have 

  
  

 
 

   ̇

   
   

    .                  (8) 

The momentum conservation (Navier-Stokes 

equation) for a compressible Newtonian and 

irrotational fluid (Marion and Temam, 1998) is 

written as 

 (
  

  
     )            

 
 

 
                      (9) 

where µ and    are the viscosity pressure of the 

liquid. Based on the assumptions of the sphericity 

and symmetricity,   and   components of 

equation (9) in the spherical coordinate system 

vanish. Therefore, r-component reads 

 (
  

  
  

  

  
)   
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 (   )

  
)                  (10) 

Substituting (8) in (10) we get 

 (
    ̈      ̇        ̇      

   
 

   

 
 

 
      ̇      ̇       

   )   
   

  
          (11) 

Integrating equation (11) with respect to   from   

to    leads to 

          
 

 
(
  

 
    

                

       ̇      ̈       ̇ ) (
 

  
 

 

 
)           

      ̇      ̇ ) (
 

   
  

 

   
))    (12) 

where     is the liquid pressure of the bubble at 

the interface and     is the liquid pressure at the 

elastic solid surface. Suppose that gas bubble 

undergoes an adiabatic or isothermal process, the 

pressure inside bubble    is given by 

         
 (

  

 
)
  

                 (13) 

where    is the partial vapour pressure and    
 is 

the initial partial pressure of the gas bubble and   

is the specific heat ratio. The equation of the 

pressure at the bubble interface from liquid and 

gas sides can be expressed as     related to the 

interior pressure of the bubble is    . It is 

expressed as 

           
  

 
   

 ̇

 
 ,            (14) 

where   is the surface tension of the liquid and    

is the acoustic wave pressure (details in section 

5.3). 

To find the relation between the bubble volume 

and the cavity volume we followed the works in 

(Wang, 2017, Doinikov et al., 2018b, Doinikov et 

al., 2018a, Liu et al., 2018). They assumed that the 

volume change of the cavity is linear to the 

pressure fluctuation at the confinement wall, and 

the instantaneous volume of the cavity is    and its 

initial value denoted by     respectively. The 

pressure of transient between solid and the liquid 

is      and the pressure of the solid is   , when the 

bulk modulus of the elastic confinement is   , 

then 

       
   

  
                           (15) 

The change in volume of liquid is also considered 

to be proportionate to the variation in pressure at 

the constriction wall. Suppose that    is the 

continuous volume of the liquid and     is the 

initial volume and the bulk modulus of the liquid 

is   , which gives 

         
   

  
                          (16) 

It is noted that the cavity volume is equal to the 

sum of the liquid and bubble volumes, where the 

volume of the transient bubble is    and initially 

is    , respectively then 

                      ,          (17) 

By combining (15), (16) and (17), we get   

                       

       
   

  
           

   

  
          .  (18) 
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If    ≪     or      , then        , we obtain 

      
      

   
     

     
 

   
          (19) 

where   (
 

  
 

 

  
) and     is the initial radius 

of the cavity. We write   as termed as the effect 

bulk modulus for the system, which increases with 

the bulk modulus of the liquid    and the bulk 

modulus of the confinement    where the bulk 

modulus is defined as the relative of the changing 

pressure by changing the volume (Arıtan, 2006). 

We substitute     into (15). Then we get the 

relation between bubble radius and cavity radius 

       
 

  
           

or 
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By combining (14), (19) and (12), we get the 

Rayleigh-Plesset equation for a confined bubble 
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If we set    , then equation (21) reduces to 

(Liu, Wang, & Zhang, 2018; Wang, 2017) 
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Further, if     approaches to   in (22), then 

equation (22) will be reduced to the Rayleigh-

Plesset equation (Rayleigh, 1917) for a bubble in 

an unbounded liquid. 
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3. MODEL LINEARIZATION 

In this section, equation (21) is linearised by linear 

perturbation theory. Then an exact solution of the 

linear solution is derived. To do this, by setting 

           where         and   ≪   is 

the dimensionless amplitude of the pressure 

perturbation in the Rayleigh-Plesset equation of a 

bubble in a confinement (21) and using binomial 

series, we obtain 
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We neglected the non-linear terms of the above 

equation and rearrange it, setting         .  

Then we get the harmonic oscillation equation 
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))  

and    is denoted as natural frequency.  Note that, 

the equation is similarly reduced as in (Liu et al., 

2018, Wang, 2017) when  ≪     Equation (25) is 

known as harmonic oscillator (Nadir and Manmi, 

2020) and can be solved analytically subject to 

appropriate initial radius and velocity. The exact 

solution of homogenous part of (25) can be 

classified into three cases. 

1) If      
  then the general solution of (25) is 

      
  (  √     

 )
    

  (  √     
 )

 

2) If      
  then the general solution in this 

case is 

            
    

3) If      
  then the general solution of (29) is 

given by 

      
               

             
where    and    are arbitrary constants and 

     
     can be found by using initial radius 

and velocity. 
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Particular solution of (25) can be found using D-

operator method where    is considered as in (31) 

we arrive, 

   
 

  
  

  

   
          

             
 

(   
          t                

where             ,   is angular frequency 

and   is time. In the absence of wave pressure 

    . 

Thus, general solution of equation (25) is 

                                 (26) 

When     the general solutions in all above 

cases reduce same as in Rayleigh-Plesset equation 

(Bossio Castro, 2019). 

 

4. NONDIMENSIONALIZATION 

Nondimensionalization equations are a 

very well-known and useful technique in 

differential equations, particularly in fluid 

dynamics for simplifying the problem and 

reducing parameters. So, the physical units are 

removed and the variables are scaling. To 

dimensionless equation (21), we define   

         ̇    ̇  and  ̈    ̈
  

  
    

               , where   √    and   

       and the variables subscript with * 

denotes non-dimensional quantities (Wang and 

Manmi, 2014). By substituting    ̇  ̈    and   

in equations (21) to see.  
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since   is different from zero we get 
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Then, we get 
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where      √          
  √  

 
 and    

   

 
. 

 

5. NUMERICAL RISULTS AND 

DISCUSSION 

In this section, gas and acoustic bubble 

oscillations characterized by the parameters  

        Pa s,        kg    ,   
                   kPa,        kPa, 

          ,       m,   
 

 
,      , 

          kPa and           and      have 

been considered. Equation (21) is the nonlinear 

second order differential equation that cannot be 

solved analytically (Nadir and Manmi, 2020). 

However, it can be solved by using an efficient 

numerical approach such as fourth order Range-

Kutta scheme (RK4) (Saeed and Sadeeq, 2017) for 

a linear system of the ordinary differential 

equation (LSODE). To change equation (29) to 

LSODE we assume            ̇, which leads 

us to 

 

  ̇    , 
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)       ).                                 (30) 

In this work, MATLAB function ode45 which is 

based on fourth order Runge Kutta method with 
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controlling the maximum step (0.01) and relative 

error (0.05) was used for solving the above system 

(Yi and Lu, 2017, 2018, Mathworks, 2018, Bossio 

Castro, 2019). 

 

5.1 Comparison Between Solution of 

Linearization and Nonlinear  

Figures 2a and 2b show the comparison of the 

numerical and exact solutions of bubble radius 

oscillations subject to the acoustic wave with 

different   . It is observed that, the bubble radius 

over time was not affected significantly when    
=0.04, while when        , the effects of    on 

the frequency and amplitude of bubble oscillations 

increases over time. Therefore, when    is 

increasing, the difference between linearization 

and the numerical solution is increasing in all 

cycles with the same parameters as the pervious. 

 

 
 

 
Fig 2. Comparison the numerical (30) and exact solutions 

(29) of bubble radius in elastic confinement when (a) 

        and (b)        , the remaining parameters are 

        Pa s,        kg    ,               
       kPa,        kPa,       m,        
      and           kPa.. 

 

5.2 Gas Bubble Oscillations 

 In this section confined gas bubble 

oscillation was performed for different        to 

investigate the effect of these parameters. The 

considered cases are characterised by the 

following parameters         Pa s,        

kg    ,                   ,        kPa, 

       kPa,            and       m. 

Figure 3 shows bubble radius oscillations when 

     (solid blue),      (solid red) and       

(solid yellow) with           .  

 Figures 3 show the comparison of the 

bubble radius oscillations subject to the acoustic 

wave with different   . It is observed that the 

bubble radius over time is increasing with    when 

   =0 to 0.04 the bubble radius increases 0.062% 

from      and      respectively. while when    
in increasing from 0.04 to 0.08, the effects of    
on the frequency and amplitude of bubble radius 

oscillations increase over time by about 0.4% of 

     and      respectively. Nevertheless, when 

   is increasing, the difference between the radius 

of oscillations is increasing in all cycles of time. 

 

 
 
Fig 3. The comparison of the bubble radius when the 

parameters used are           and      for      , 

     . The other parameters are        ,    
                   Pa,           ,   

          ,               and               

 

5.3 Acoustic Bubble Oscillations  

 The propagation of pressure oscillations 

with sound velocity through a medium such as 

solid, liquid, or gas is known as an acoustic wave 

(sound) (Yasui, 2018). Stable bubbles can be 

activated by acoustic waves. In the presence of a 

standing acoustic wave, the acoustic pressure in 

(21) can be expressed as  

  =                                    (31) 

where    is the pressure amplitude and   is the 

angular frequency. To consider the effect of    in 

equation (21) in acoustic bubble oscillation 

          and      with the parameters are 

     ,      ,        ,    
              Pa,           kPa   

        ,              ,               
Figure 3 illustrates bubble radius oscillation along 

50   . The maximum bubble radius decreases and 

the minimum bubble radius increases with 

increasing   . However, the average bubble radius 

over the considered period was not changed 

significantly with   . 
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Fig. 4. Comparison of the bubble radius by    versus time 

for the acoustic wave from the parameters are           

and      and the remaining parameters are      , 

     ,        ,           ,       Pa,     

      kPa,       kPa,           ,             , 

       kg     and             . 

 

The dual-frequency bubble for equation (28) can 

be written as a combination of two waves 

                                 

where     and     are the pressure amplitudes,    

and    are the angular frequency and   is the 

phase shift of the wave (Klapcsik, 2021, Hu et al., 

2019, Saitoh et al., 1995). 

When                    ,       
    kHz, and      we obtain the same as in 

Figure 3. Here, the parametric study has the same 

parameters as Figure 3 except        kPa, 

       kPa,        kHz and        

kHz. In this figure, the maximum radius in all 

cycles was increased by about 0.005% and 0.02% 

for    0.04 and    0.08 respectively. However, 

the minimum bubble radius was not changed 

significantly in all cycles. 

 

 
Fig 5: The bubble radius shows the defect of the different    
where      (blue solid),      (red solid) and      (yellow 

solid) versus time on the acoustic wave with the parameters 

are           ,           ,        ,   
          ,             ,      ,      ,     

         ,              ,        kPa,        

kPa,        kHz and        kHz. 

 

6. SUMMARY AND CONCLUSIONS 

 By modifying the Ryleigh-Plesset equation 

for spherical bubble oscillations in Newtonian and 

viscous fluid with considering compressibility 

parameter ε in a spherical liquid-filled elastic solid 

was derived and analysed. The equation is 

linearized for a small amplitude of oscillations. 

Then, the exact solution of the linearization is 

compared with the numerical solution of the 

original equation. It is observed that when 

          the difference between the exact and 

numerical solution is increasing over time, while 

when    is smaller than 0.08 the difference does 

not change any cycles. However, the amplitude of 

the bubble radius oscillation is increasing with   . 
Then the effect of    is increasing over time. 
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