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ABSTRACT 

Hearing loss is a growing public health concern with serious implications for 
individual’s quality of life. One major cause of hearing loss is exposure to loud 
noise. This study proposes a mathematical model of hearing loss caused by 
noise exposure using ordinary differential equations with the aim of providing 
a framework for understanding the dynamics of the impact of noise hazard. 
The model is analyzed using local and global stability to determine conditions 
under which the level of noise pollution remains constant or changes over time 
and the threshold level beyond which the effect of noise becomes 
uncontrollable. Sensitivity analysis is performed to determine parameters with 
greater influence and the ones to control in order to reduce impact of noise 
exposure. The findings highlight the importance of various parameters in the 
dynamics of hearing loss by noise exposure and in developing effective 
strategies for preventing and managing hearing loss.  
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1.Introduction 
Hearing is one of the crucial senses and 

like vision is vital for distant warning and 
communication. It is used for creating alert, to 
communicate pleasure and also fear. Hearing 
enables one to identify and distinguish between 
objects within an environment based on the 
sound they create (Alberti, 2001). Sounds are 
forms of energy produced by the vibration of 
objects. Sound can travel through different types 
of matter such as solids, liquids and gases. It 
travels approximately 340 meters per second 
through air; however, it goes quicker through 
liquids or solids (Van Hemel, S.B et al., 2004), 
(Lee and Fleming, 2002), (Natarajan et al., 
2023). The decibel (dB), which is the logarithm of 
the ratio of two different sound intensities or 
pressures, is the standard unit of measurement 
for sound level while Hertz (Hz) defined as cycles 
per second is the unit for frequency (National 
Research Council Committee on Disability 
Determination for Individuals with Hearing, 
2004),(Natarajan, 2023). When sound interferes 
with regular activities such as sleep or 
conversation, it becomes noise. 

The word noise comes from the Latin word 
“nausea", which means “sea sickness" (Kumar et 
al., 2004). It is a highly subjective term and has 
been defined by many psychologists. According 
to Kiely (1997), it is described as undesired 
sound, which may be thought of as the incorrect 
sound at the wrong place at the wrong time. In 
addition, Singal (2005) defines noise as any 
sound that is unwanted by the recipient and has 
the potential to harm the health and well-being of 
people. Noise is also defined as an undesired 
sound, a possible health danger, and a message 
that is released into the environment with the 
intention of having a negative impact on those 
who do not wish to hear it (Vanadeep and 
Krishnaiah, 2011). Noise is described in medical 
literature as a very loud sound capable of 
causing harm to the inner ear (Šušković and Fajt, 
2012). Webster defines noise as “a sound that 
lacks agreeable musical quality or is noticeably 
loud, harsh or discordant”. It has global effects 
like air, water and other environmental pollutant, 
it is now recognized as a serious environmental 
issue.(Agarwal, 2005) 

According to Singh (1991) noise pollution is, “the 

state of discomfort and restlessness caused to 

humans by unwanted high intensity sound", 

meaning, unwanted sound released into the 

atmosphere leading to health hazards. Noise 

could originate from a variety of sources. There 

are three categorized primary sources of noise, 

which include: natural, biological and artificial 

sources (Mahandiyan, 2006),(Schmidt, 2005) . 

Aside the several negative impacts of noise on 

human health, its effects are generally classified 

under four different types: psychological, 

physiological, reduction productivity and physical 

effects. 

Psychological effects: Humans and animals 
behaviour have been changed because of high 
level of noise. It is observed that unwanted noise 
frequently causes aggravation, frustration, and 
weariness, resulting in poor performance, 
efficiency, and a high rate of mistakes. Noise has 
negative impacts on efficiency, especially in 
youngsters. When houses or schools are located 
near sources of noise such as roads or airports, 
cognitive development decreases. 
 
Physiological effects: Noise pollution may 
induce annoyance, aggravation, anxiety, strain, 
and stress, which can lead to changes in blood 
hormone levels, these could also cause a 
change in human bodies. Record has it that the 
noise level of 55 dBA is sufficient to cause 
serious annoyance in outdoor environment. 
Noise pollution of various sorts caused by 
varying level of noise may cause high blood 
pressure, heart diseases, dilation of pupils of the 
eyes, tensing of the voluntary and involuntary 
muscles, diminution of gastric secretion, 
neuromuscular tension, nervousness, stomach 
and intestinal diseases such as ulcer etc. Lung 
damage occurs at 190 dBA. A very high-level 
noise caused by sonic booms or explosion may 
lead to termination of pregnancy in early stages ( 
Humes, L.E., 2019). 
 
Reduction productivity effects: Noise has a 
variety of impacts on humans, including speaking 
interference, irritation, sleep disruption, and other 
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issues (Singh, 1991). Speech interference simply 
refers to a person’s inability to communicate and 
hear a sound because of background noise. The 
most crucial and also the most difficult use of the 
auditory system is speech reception. Noise can 
either mask speech, rendering it inaudible, or 
make just certain frequencies audible but with 
diminished intelligibility . Noise decreases the 
depth and quality of sleep, which has a negative 
impact on one’s mental and physical health. 
Furthermore, noise levels of more than 40 
decibels at night have been linked to sleep 
disruption (Humes, L.E., 2019). Low-frequency 
noise, even as low as 50 to 60 dBA, can 
influence the brain’s higher centers, disrupting 
sleep patterns and preventing deep sleep 
(Agarwal, 2005). In addition, it has been proven 
in both laboratory and field research that 
employees who are exposed to occupational 
noise have poor performance on cognitive tasks. 
Although, the effects vary depending on the kind 
of noise and the activity at work (Qutubuddin et 
al., 2012). 
 
Physical effects: Damage to the human 
hearing system caused by various forms of noise 
is referred to as auditory effects. The human ear 
is a very sensitive organ. Hearing will be affected 
if the hearing systems are harmed in any 
manner, whether by high noise levels or illnesses 
which affects the brain, auditory nerve, or 
auditory ossicles (González, 2014). The impacts 
of high-intensity noise on humans are indicated 
by a hearing threshold of 0 dBA, a pain threshold 
of 120 dBA, ear pain threshold of 140 dBA, and 
ear drum damage of 160 dBA (Vasudevan, 
2006). In the 90 dBA range, auditory fatigue can 
occur, along with side effects such as whistling 
and buzzing in the ears. Continuous noise 
exposure might result in deafness. At 100 dBA, 
permanent hearing loss occurs (Singh, 1991). If 
hearing loss goes unnoticed, it can have a 
negative impact on a person’s ability to operate. 
In general, hearing loss is caused by several 
factors such as noise level and the daily noise 
exposure period, heredity (genetics), birth 
complications, aging (presbycusis), the sound 
wave pressure and frequency, certain viral 
diseases, chronic ear infections (Van Hemel, S.B 

et al., 2004), (Kouilily et al., 2018b), (Kouilily et 
al., 2018a). 
 
It has been established that once exposed to 

loud noise, temporary hearing loss can occur 

which progresses with continuous exposure to 

loud noise or sound (Van Hemel, S.B et al., 

2004),(Adisesh et al. 2022). When it becomes 

permanent as a result of continuous exposure to 

extremely loud noise it is referred to as 

permanent noise-induced hearing loss and 

cannot be regain (Liverman et al. 2016), (Van 

Hemel, S.B et al., 2004), (Adisesh et al. 2022), 

(Sataloff, R.T, 2006). According to Shapiro 

(2019), there are numerous negative impacts of 

hearing loss on the individual which include falls 

that can result to serious injuries or even death. 

He further assert that even a “mild degree of 

hearing loss triples the risk of an accidental fall" 

(Shapiro, 2019). The Center for Disease Control 

and Prevention (CDC) also affirm that     of the 

elderly people falls each year and the outcome of 

these falls were often emergencies cases, 

broken bones, traumatic brain injuries, 

hospitalizations or death (Chen et al., 2020). 

Researchers assert that if a temporary 
hearing loss is as a result of the environment (for 
instance, loud noise at a factory or other 
sources), it resolves after few minutes, days or 
weeks of treatment and/or cautionary measures 
depending on the level of exposure. They also 
states that precaution among other measures are 
required to protect the ears against hearing loss 
(Dickson, 1953), (Van Hemel, S.B et al., 2004),  
(Adisesh et al. 2022), (Sataloff, R.T, 2006). In 
addition, Clason (2021) affirm that most cases of 
hearing loss is “mild and will go away quickly" ( 
Liverman et al. 2016). Consequently, individuals 
with temporary hearing loss could have such 
cases resolved within a short time duration and 
eventually be considered still susceptible to loud 
noise when re-exposed to any noisy 
environment. 

 
According to the World Health 

Organization (WHO), more than 430 million 

people, or    of the world’s population, require 
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rehabilitation to address their “disabling" hearing 
loss and 34 million of these are children. By 
2050, it is estimated that this number will 
increase to more than 700 million individuals or 
one out of every 10 people (Humes, L.E., 2019). 
Mathematical models have been formulated to 
analysed the function and dysfunction of the 
inner ear by using partial differential equation 

while other researchers used     model to 
describe the dynamics of hearing loss caused by 
viral Infection such as mumps (contagion factor) 
and social factors (Kouilily et al., 2018b), (Kouilily 
et al., 2018a). 

 

In this paper, we propose       model to 
study the dynamics of hearing loss caused by 
hazardous exposure to noise. This is done by 
considering the model in (Kouilily et al., 2018b), 
(Kouilily et al., 2018a)] and introducing the 
exposed class with the aim of accounting for the 
susceptible individuals losing their hearing 
abilities due to excessive exposure to noise 
hazard. Consequently, the model which is 
derived using ordinary differential equations, 
evaluates the impact of noise hazard on human 
health with focus on hearing loss. The paper has 
five sections, in Section 2, we present the model 
description and derive the basic reproduction 
number. Model analysis consisting of the stability 
analysis of noise-free, noise-endemic steady 
states, and the sensitivity analysis of parameters, 
is discussed in Section 3. We use numerical 
simulation to also show the dynamical behaviour 
of our results in Section 4. Finally, the discussion 
of results is captured in section 5. 

 

2.Mathematical Model 

2.1 Model description 
 In this section, we introduce a new 

mathematical model       by using ordinary 
differential equations to study the dynamics of 
hearing loss caused by exposure to noise. The 
entire population is divided into four 
compartments: the susceptible individuals (those 
with normal hearing but are likely to loss same 

when exposed),  , the individuals exposed to 
noise hazard,  , the affected individuals (those 

suffering loss of hearing),   and lastly, the 
removed individuals at time   (those having 

temporary hearing loss with the possibility of 
regaining or resolving the issue within few weeks 

of treatment and/or cautionary measures.),  . 
The interaction between the four compartments 
is capture in Figure 1.  

 
   

Figure  1: Model diagram for the dynamics of 
hearing loss 

 
The derived system of equations of the 

model is given in Eq. (1) while the description of 
the parameters used is given in Table 1.  

 
  

  
          

 
  

  
               

 
  

  
             (1) 

 
  

  
           

 
with the initial condition:             

                
 
 
Table 1: Description of the model 

parameters.  

Para
meter  

 Parameters description  

  Recruitment rate of the population  
  The rate of exposure of the susceptible 

to noise 
  Rate at which the exposed becomes 

affected  
  Rate at which temporary hearing loss is 

regained or resolved 
  Natural death rate  

  The rate of death emanating from falls 
or accidents as a result of hearing loss 

  Rate of re-exposure to noisy 
environment that could lead to further 
hearing loss 
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Also considering the following equation:  
                                  (2) 

 the derivative of   is given below with respect to   as  

 
 

  
                    

which implies that  
 

  
               

It follows that  

   
   

             
 

 
 

Therefore, the feasible region of the system defined 
by Eq. (1) is given by  

                      
 

 
         

         
 

2.2 Basic reproduction number 
 The basic reproduction number is known to 

be an effective tool that predicts how different 
parameters affect the transmission/impact of the 
disease among the population, and it is often denoted 
by   . By using the next generation matrix, we obtain 
the basic reproduction number of Eq. (1) as follows: 
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and the reproduction number is given by the spectral 

radius of     , that is  

   
   

             
 (3) 

 

3.Stability Analysis of the Model 
 In analysing the stability of the various steady 

states of the model equation, the Jacobian matrix of 
Eq. (1) is obtained as  

           

[

          
           
           

         

]    (4) 

 
 

3.1Noise-free steady state 
 This entails a case where no individual is 

exposed to noise hazard. It therefore implies that the 
noise-free steady state exist when     which 

means     and    . Consequently from  
  

  
            

 

                    
 

 
 

Thus the system, Eq. (1) has a noise-free steady 

state    (
 

 
      ). 

To determine the local stability of the noise-
free steady state    the Jacobian matrix in Eq. (4) is 

evaluated at    which resulted to  
      

[

          
           
           

         

]     (5) 

 and the analysis can be summarised with the 
following theorem.  
Theorem 1 The noise-free steady state,    is locally 
asymptotically stable If the basic reproduction 

number,      and unstable if     . The value of 
   is determined using Eq. (3).  
 
Proof. Considering the Jacobian matrix for the noise-
free steady state, Eq. (5) and performing some row 
operations to obtain the eigenvalues as the diagonal 
entries of the matrix give  

      

[
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This gives                                  
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         [             
   

 
]     

                              [    ]

 

where    
        

                           
 (see details in 

Eq.(6)) and      if  
   

             
                

Consequently,                since      

gives the feasibility region of the noise-endemic state 
which implies that for the noise-free state      and 

     if     . 
Hence, the noise-free steady state,    is 

locally asymptotically stable if      and unstable 
when     .  
 

3.2 Endemic steady state  
 The noise-endemic steady state,    of the 

model equation, Eq. (1) is obtained as    
              where 

 

    
  

  
        

       

   
        

                

    
        

          

        
 

and                               ,  
          .  

The endemic state exists if and only if 

   
       

   
   which gives the biological feasibility 

of the model. This implies that  

   
   

   
 

        

                           
    (6) 

 
 Hence, the analysis of the endemic steady state 
gives the following result.  
Theorem 2 The noise-endemic steady state,    is 
locally asymptotically stable whenever is exist, that is 

when      but it transits to the noise-free state 

when If     .  

  
Proof. The Jacobian matrix for the endemic 
equilibrium is obtained from Eq. (4) as  
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Carrying out some row operations generated the 
eigenvalues as the diagonal entries of the following 
triangular matrix  
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Hence,      
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Consequently, the endemic state,    is always stable 
whenever it exists, that is when     .  

 

3.3 Global Stability 
 For higher-dimensional systems, different 

techniques could be used to prove the global stability 
of steady states. Lyapunov function is the most 
common one which are used to establish the global 
stability of steady states.  
Theorem 3 Suppose that     , then the noise-free 

steady state,    is globally asymptotically stable.   
Proof. We begin by creating a Lyapunov function, 
and take into account the       model in the space 
of the first three variables         only. The noise-

free steady states for the entire       model must 
be globally stable if the noise-free steady state for the 
first three equations is stable, which is obvious, 
      . Since we are interested in working with only 

the positive orthant it is sufficient to work with   
 .  

   (         
 

  )  
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 where     is to be determined and    
 

 
 . First, it 

is easy to see that     at the noise-free steady 

state. To show that     for all         (
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is sufficient to prove that    (
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Hence, differentiating Eq. (7) gives 
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Let   
 

   
 then on simplification, the 

equation becomes  
 

  
     (

 

  
 

  

 
  )  

     

 
        

Since     , the last term is negative. Now we have 
to show that the first term is also negative. If we set  
        , then it is sufficient to show that this 

expression         is positive for every       
 . Indeed,  

  
 

 
   

       

 
 

      

 
    

Hence, we have 
 

  
    for all                 . 

Therefore, by Lyapunov’s theorem, the noise-free 
equilibrium is globally asymptotically stable.  

  
Lemma 1  Suppose that            are   positive 
numbers. Then their arithmetic mean is greater than 
or equal to their geometric mean. In particular,  
 

          

 
 √       

  

  
Theorem 4 Suppose that     , then the noise-
endemic steady state,    is globally asymptotically 
stable.  

  
Proof. Similarly, only the first three components of 
the system defined by Eq. (1) are taken into 
consideration,        . Suppose that they belong to 

the positive orthant   
 . We define a Lyapunov 

function  

    (         
 

  )    (         
 

  )

   (         
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where          , and      will be determined 
later. Note that     when                    and 

    otherwise;   is also radially unbounded. Next is 

to prove that 
  

  
 is negative. 

Differentiating   with respect to   and substituting the 

values of 
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Since            , expanding the equation yield  
 

  

  
    

       

 
                  

     

 

                           
    

 
          

                     
   

 
             

 

Let       and also by multiplying and dividing the 
fractions with the steady state value give  

 
  

  
    

       

 
            

     

 
                

             

                               

          

                

 

Since all fractional terms are negative and the non-
fractional terms are positive they can be combined. 
First, we note that               from the 

corresponding steady state equation since      . 
Next, assuming the value of    such that        
               gives  

     

   

 
 

Therefore, extracting         from all terms in the 
equation produce  
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The last two terms in the formula above are zero 
since               . 

For         it implies that  

   
   

 
  

According to this, the derivative of the Lyapunov 
function becomes  

  

  
  

       

 
      [  

  

 
 

    

      
   

   ]  

It is clear that the first term in the above equation is 
negative unless     . It is then required to show 
that the second term is also negative. Let  
 

   
  

 
        

    

             
   

     

 
Then,          and according to Lemma (1), the 
arithmetic mean is larger than the geometric mean. 
Hence,  
 

  

 
 

    

      
   

       

 
Therefore, the second term in the differentiating 
equation of the Lyapunov function is negative, and it 
is zero whenever                     
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Now we have to apply the Krasovkii-LaSalle theorem 
and consider the set where the Lyapunov function is 
equal to zero:  

                  

It is easy to see that 
  

  
   if and only if  

               
  

 
 

    

      
   

      

Since     , then 
  

  
  , and from Eq. (1), we  

can conclude that     . Therefore,  
  

 
 

    

      
   

              
  

 
 

 

      

Consequently, this equality holds if and only if     . 
Hence, the set   consists of the singleton           .  

 

3.4 Sensitivity Analysis  
 The aim of sensitivity analysis is to determine 

qualitatively the parameter with the highest impact on 
the dynamics of the model. If a little change in a 
parameter’s value causes significant change in the 
dynamics of the model then the parameter is said to 
be sensitive. To perform sensitivity analysis of a 
dynamical system, we suppose that the system has 

  compartments    for           and   parameters 
   for          . 

Representing the model balanced equations 
as a system of differential equations as in 
[(Martcheva, 2015), (Rahman et al., 2021)] gives  

 
   

  
         

 
where      and     . Non-normalization, half-
normalization and full-normalization are the 
techniques employed for analysing the sensitivity of 
the model. 

The non-normalization is given by  
 

    
      

   
 

 
while the half-normalization is defined as  
 

    (
 

     
) (

      

   
) 

 
and the full-normalization is obtained as  
 

    (
  

     
) (

      

   
) 

 

where     is the time-dependent sensitivities of    with 

respect to each parameter value   . 

  
 

 
 
 
Figure  2: Local sensitivity analysis with non-

normalization technique of all variables in 
computational simulations using MATLAB with 
respect to (a) all parameters (b) with exception of   
and  .  

     

(a) 

(b) 

(a) 
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Figure  3: Local sensitivity analysis with half-
normalization technique of all variables in 
computational simulations using MATLAB with 

respect to (a) all parameters (b) with exception of   
and  .  

 
  
 

 
 
 
Figure  4: Local sensitivity analysis with full-
normalization technique of all variables in 
computational simulations using MATLAB with 
respect to (a) all parameters (b) with exception of   
and  .  

4. Numerical Simulation of the Model 
 In general, from the simulation results, it is 

observed that the various classes of the population 
are sensitive to the critical parameters. For instance, 
susceptible individuals are sensitive to   and  , 
whereas they exhibit less sensitivity with respect to   

and   (see Fig. 4). In addition, Fig. 2 shows that the 
exposed individuals are sensitive to the model 

parameters   and   while the affected individuals 
(those suffering loss of hearing) are sensitive to   and 

 . On the other hand, Fig. 3 shows that individuals 
having temporary hearing loss with chances of 
resolving it are sensitive to   and   as they have less 

sensitivity to parameter  . 
Some contrasts and similarities are 

demonstrated based on the impact of each parameter 
used in the model steady states analysis with the 
three sensitivity analysis techniques. It is opined that, 
in comparison to other techniques, the full-
normalization technique is more suitable for 
identifying the model critical parameters as observed 
in Fig. 4(a). 

Furthermore, based on the basic reproduction 
number defined in Eq. (3), the stability 

 

 
Figure  5: Stability region of hearing loss: The 
portions below the curves represent the unstable 
regions, while the portion above the curves represent 
the stable regions of the model.  

Stability region of the model equation, Eq. (3) 
is obtained using MATLAB application and captured 
in Fig. 5. As shown in Fig. 5, the stability regions of 
the model indicate that the noise-free steady state 
increases with corresponding increase in the rate at 
which the temporary hearing loss is resolved or 
regain within the opportune period   and/or decrease 

in the exposure rate to noise hazard,  . In contrast, 
the endemic steady state increases with 

(b) 

(b) 

(a) 
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corresponding increase in the exposure rate to noise 
hazard,   and/or decrease in the rate at which 

temporary hearing loss are resolved  . 
Consequently, the dynamics of the model 

equation for the noise-free and endemic steady states 
were obtained using the following set of parameter 
values:                                  
     (see Fig. 6). For values of     , the dynamics 
of the model as captured by Fig. 6(a) indicate a 
noise-free steady state while for       

as shown in Fig. 6(b) the system transits to an 
endemic steady state. Hence, the outcome 
complement the results obtained earlier from the 
precious sections. 

 
 

      
                 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  6: The dynamics of the model equation for (a) 

    , noise-free steady state (normal hearing) (b) 
    , endemic steady state (loss of hearing) 
 

5. Discussion 
 In conclusion, this study presents a 

mathematical model of hearing loss caused by noise 
exposure using ordinary differential equations. The 

      model divides the population into four 
compartments: susceptible individuals ( ), exposed 

individuals (  ), affected individuals (  ), and 
individuals with temporary hearing loss that could be 

resolve within a given time duration ( ). By analysing 
the model, the existence and stability of the noise 
steady states were established. The noise-free state 
was shown to be globally asymptotically stable if the 
basic reproductive number is less than one, while the 
endemic state was found to be globally asymptotically 
stable if the basic reproductive number is greater than 
one. This implies that the model is well-posed and 
can accurately describe the dynamics of hearing loss 
caused by noise exposure. 

The sensitivity analysis of the critical 
parameters of the model highlights the importance of 
reducing exposure to noise in order to prevent this 
hearing loss. These findings have important 
implications for public health and policy decision-
making, as they can inform interventions aimed at 
reducing noise exposure and preventing hearing loss. 
In summary, the mathematical model presented in 
study provides a valuable tool for understanding the 
dynamics of hearing loss caused by noise exposure, 
and can inform effective and targeted public health 
interventions to mitigate its impact. It is hoped that 
these findings will contribute to the development of 
more effective strategies for the prevention and 
management of hearing loss. In the future, we plan to 
improve our model by using real data, ideally 
collected from hospitals or workplaces. This will help 
us test how well the model works in real situations 
involving noise exposure and its effects on hearing 
loss. 
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