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1.INTRODUCTION: 

 

Let      be the algebra of     complex 

matrices and      be a self-adjoint operator, 

both defined on a finite complex Hilbert space   . 

Then we consider the  -numerical range and the 

positive and negative  -numerical ranges denoted 

by  

 

 

 

 

 

 

 

respectively. Where   
 ( ) is the set of positive 

 -numerical range and    
 ( ) is the set of 

negative  -numerical range of an operator  , 

which have been studied by other researchers(K. 

Li, N.K. Tsing, F. Uhlig, 1996),(R.D. Grigorieff, 

R. Platto, 1995). 
1
 

The sets   
 ( ) generalize the well-known and 

widely used notation of classical numerical range. 

 

 

Which introduced by Toeplitz in (Toeplitz, 1918) 

that is a practical tool for studying operator 

matrices and operators, has been extensively 

examined. As an extensive background for 

numerical range and its properties we refer to 

see,(Wlat Hamad, Ahmed Muhammad, 

2020),(Dirr, Gunther, and Frederik vom Ende, 

2020)and reference therein. We also introduce the 

set  -numerical range for a bounded linear 
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operator   and a self-adjoint operator   in the 

infinite dimensional case as follows: 

The S-numerical ranges generalize the classical 

numerical range and some properties of the 

 ( ) can be extended to   ( ) as follows:  

Consider     , where   be the algebra of 

    complex matrices and      be Hermitian 

matrix. The set   
 ( ) is well-known set in 

which each of the sets   
 ( ) and   

 ( ) are 

convex sets. The relationships between the sets 

  
 ( ) and   

 ( ) are described in (Bebiano, 

N., Lemos, R., Da providencia, J. and Soares, 

2005) and (Nakazato,H., Bebiano, N. & D A 

Providencia, J., 2011). According to Bayasgalan 

(Bayasgalan, 1991), the set   
 ( ) is convex if   

is nonsingular and indefinite. Although sharing 

some analogous properties with the classical 

numerical range, has a quite different behavior. 

Unlike the numerical range   ( ) is not convex. 

One easily checks that    
 ( )    

 ( ), so 

is   ( )    
 ( )      

 ( ). If      then 

  
 ( ) is the empty set and the set   ( ) 

reduce to classical numerical range, see ((Bebiano, 

N., Lemos, R., Da providencia, J. and Soares, 

2005), and reference therein).Furthermore, 

(Bebiano, N., Lemos, R., Da providencia, J. and 

Soares, 2005), shows that  (  )    ( )̅̅ ̅̅ ̅̅ ̅̅ ̅ if   

is positive definite. More generally, the following 

properties are known: 

 

1.   ( )    ( 
   )for any finite matrix 

  and any nonsingular Hermitian operator 

  such that         Also,  (   
  )     ( )   , for any      . 

2. It is clear that   ( 
 )    ( ) where 

   is self-adjoint operator. 

3. For any operators   and   we have  

  (   )    ( )    ( ). 
4.   ( ), it may not be closed and is either 

unbounded or a singleton (Bebiano, N., 

Lemos, R., Da providencia, J. and Soares, 

2005). 

5. For any       ( )  * + if and only if 

      and we have   ( )    if and 

only if   is hermitian. 

 

The great advantage of the  -numerical range, 

when compared to the spectrum, is that it is 

relatively easy to compute (certainly in the case of 

matrices). It became an effective tool in numerous 

physics(N. Bebiano, J. Da Providˆencia, 1998) and 

reference therein, applications as well as in 

numerous disciplines of pure and applied 

mathematics, including control theory (E. Rogers, 

K. Galkowski, and D.-H. Owens, 2007) and 

operator theory(C.-K. Li and Y.-T. Poon, , 

2011),(Berivan Faris Azeez , Ahmed Muhammad, 

2020). Moreover, numerical range with respect to 

a family of projections has been investigated by 

(Waed D., Joachim K. and Nazife E. Ö., 2018), 

and we generalize this concept to -numerical 

range with respect to a family of projections due 

to its definition there are interesting connections 

between the  -numerical range and  -numerical 

range with respect to a family of projections 

which have been discussed. 

The following is the structure of this paper. 

Section 2 is devoted to the main definition of  -

numerical range with the respect to a family of 

projetions and some basic remarks. In section 3.1, 

we are going to establish the connection of family 

of projections with the  -numerical range. In 

section 3.2 we will define the product  -numerical 

range and establish connection to the product  -

numerical range that plays a notable effect in 

quantum information theory (Gawron P, Puchała 

Z, Miszczak JA, Skowronek Ł, Życzkowski K, 

2010)(Waed D., Joachim K. and Nazife E. Ö., 

2018),(Gawron, Piotr. "Z. Pucha la, JA Miszczak, 

L. Skowronek, K. Zyczkowski., 2011). Also we 

will assume that the underlying Hilbert space   is 

given as a tensor product of two (separable) 

Hilbert spaces    and    where   is finite-

dimensional of composite dimension      
where          and         . 
 

2.  -Numerical range with respect to a family 

of projections: 

We are interested in the definition of the  -

numerical range of a bounded linear operator 

  with respect to families of orthogonal 

projections. For     and a bounded self-adjoint 

operator   we define an operator     on the 

range    ( ) by  

 

  ( )  {
〈     〉

〈    〉
        〈    〉   }  

       

(4) 
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       ( )     ( )               
 

Where    *       (   ( ))   +  

and 

   *    ( )                                 +  

Remark 2.1  1.  The sets  ,   are closed with the 

operator norm, (Waed D., Joachim K. and Nazife 

E. Ö., 2018). 

2.The relation between     and    are 

expressed by  

           
 

where     is called the compression of    to 

   ( ) and    is called a dilation of     to  .  

Proposition 2.2 Let   be a bounded linear 

operator and   be a self-adjoint operator both on a 

complex Hilbert space  , then 

  (  )    ( ) 
Proof. Suppose that     (  ) then there are 

     ( ) with 〈    〉    and     , thus 

 

  
〈      〉

〈    〉
 
〈       〉

〈    〉
 

                                                
〈       〉

〈    〉
 

                                
〈     〉

〈    〉
  (5) 

We conclude that     ( ). 

Definition 2.3  Let   be a bounded linear 

operator and   be a self-adjoint operator both on a 

complex Hilbert space   and    . Then we 

define  

     ( )  ⋃  

   

〈   〉

〈    〉
 (   ) (6) 

for which 〈    〉   ,is called the  -numerical 

range of   with respect to a family of orthogonal 

projections  .  

 

Remark 2.4  

1. For a bounded linear self-adjoint operator 

  one obtains     ( )   , where 

(  )      

Let   be self-adjoint operator, as we know 

the set  (   ) contains all eigenvalues of 

the form           then after simple 

calculation and fixed     . For  

    ( )we have the following equalities: 

  
〈       〉

〈    〉
  
〈           〉

〈     〉
 

   
〈    (  )    〉

〈    〉
 (

〈       〉

〈    〉
) 

        (
〈       〉

〈    〉̅̅ ̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)  (

〈       〉

〈    〉
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 

       Therefor we obtain that      

2.     ( 
 )  (    ( ))

 , where     

     

The properies of inner product space and 

adjoint give us (
〈       〉

〈    〉
)
 

 
〈         〉

〈    〉
. 

Then we have (
〈       〉

〈    〉
)
 

 
〈       〉

〈    〉
. 

Consequently    ( 
 )  (    ( ))

 . 

3. Main Results 

3.1 Connection to the  -numerical range. 

In this section we establish the connection of 

family of projections with the  -numerical range. 

For the proof note that, for each      and for 

any orthogonormal basis *  +   
  of range of the 

projection   and we denoted by    ( ), one has  

    ∑ 

 

   

〈    〉

〈     〉
                   (7) 

Theorem 3.1 Let   be a bounded linear operator 

and   be a self-adjoint operator both on a 

complex Hilbert space  , then  

     ( )    ( ). 
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Proof. Suppose        ( ). Then there are 

     and      ( ) with 〈    〉   , for 

which 
〈   〉

〈    〉
        . Therefore  

〈    〉  
〈   〉

〈    〉
〈       〉. 

Hence          
〈   〉

〈    〉
〈       〉  

〈   〉

〈    〉
〈     〉  

Therefore                                 
〈     〉

〈    〉
  

implies that     ( ). 

Conversly: Suppose     ( ). Then there 

exists     with 〈    〉    such that 

〈   〉

〈    〉
     . We assume that   denote the 

orthogonal projection onto span* +. Then  by 

Eq.(7), we have  

〈   〉

〈    〉
      

〈   〉

〈    〉
     

〈   〉

〈    〉

〈     〉 

〈   〉
   , 

therefore       ( ). 

The following result is a generalization of 

Theorem 3.1  

Proposition 3.2 Let   be a bounded linear 

operator and   be a self-adjoint operator both on 

a complex Hilbert space  , and the family    

with    , the following holds:   

1. If          

then      ( )  
〈   〉

〈    〉
 (  ).  

2. If          then      ( ) is 

closed for          .  

3. If          

then      ( )    ( ).  

Proof. First case follows from the fact that, in the 

finite dimensional the set of all eigenvalues is 

equal to the spectrum of an operator  , so 

     ( )  
〈   〉

〈    〉
 (  ), given        . In 

order to proof second part, we remark that the 

cases     and         are readily covered 

by Theorem 3.1 and part 1. For proof of the other 

cases, we assume that (  )         ( ) with 

      . Since         ( ) there exists 

      and       ( ) with 〈    〉    such 

that 
〈   〉

〈    〉
             . Since the Hilbert 

space is finite-dimensional, we conclude that    

 

⟨   ⟩

⟨    ⟩
         

   
(
⟨     ⟩

⟨      ⟩
        ) 

       
   

(    )     
(8) 

fo some (normalized)     and           

      Consequently,        ( ). In order to 

proof third case, we assume     ( ) be given. 

Then there exists      with 〈      〉    for 

which   
〈       〉

〈      〉
. Now take                

with 〈      〉    for      , such that        

and         where          . Let   

be the orthogonal projection onto 

    *            + which is a  -dimensional 

subspace then, employing Eq.( ),  

⟨     ⟩

⟨      ⟩
      

⟨     ⟩

⟨      ⟩
     

 
〈     〉

〈      〉

〈      〉  
〈     〉

 
〈     〉

〈      〉

〈      〉  
〈     〉

   

    
〈     〉

〈      〉

〈        〉    
〈         〉

  
〈       〉  
〈      〉

      (9) 

Consequently        ( )  Now suppose 

       ( ). Then there exist      and 

     ( ) with 〈    〉   , such that 

〈   〉

〈    〉
        . 

Hence  
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〈    〉  
〈   〉

〈    〉
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〈   〉

〈    〉
〈     〉 

Implie                    
〈     〉

〈    〉
 and     ( ).  

In the next result we show how the family of 

projections is related to the point spectrum of the 

operator    and we define the set 

    {                   (   ( ))   }  

Theorem 3.3 Let   be a symmetric bounded 

linear operator and   be a self-adjoint both on a 

complex Hilbert space  , then 

     ( )  
〈   〉

〈    〉
  (   ), where 〈    〉   .  

Proof. Suppose that   
〈   〉

〈    〉
  (   ) there 

exists     such that  

 
〈   〉

〈    〉
       (10) 

Now, choose   to be the orthogonal projection 

onto     * +. Applying   to the eigenvalue 

equation directly yields 
〈   〉

〈    〉
             

which shows that   is an eigenvalue of     . On 

the other hand, for    ,  

     
〈     〉 

〈   〉
  
〈     〉 

〈   〉
 

From Eq.(8) we have 

     
 

〈   〉
〈  
〈    〉

〈   〉
  〉  

 
〈    〉

〈   〉

〈   〉  

〈   〉
 

   
〈   〉 

〈   〉
 

       

This implies that      Therefore  

     ( ). Conversely: We assume   

     ( ). Then there exist a normalized      

and        ( ) with 〈    〉    for which 

〈   〉

〈    〉
         

and 

〈   〉

〈    〉
      

〈   〉

〈    〉
      

〈   〉

〈    〉
    .  

Since       ( ) we obtain 

〈   〉

〈    〉
     

〈   〉

〈    〉
       

and hence   
〈   〉

〈    〉
  (  ).  

Remark 3.4 In theorem 3.3 when   is non-

symmetric operator, then 
〈   〉

〈    〉
  (  ) does not 

contain in      ( ).  

Theorem 3.5 Let   be a bounded linear operator 

and   be a self adjoint operator both on a 

complex Hilbert space  . Then 

      ( )  
〈   〉

〈    〉
  ( 

 )  (
〈   〉

〈    〉
  ( ))

 , 

 where      *              (   ( ))   +  

Proof. In view of Theorem 3.3 , we see 

      ( )  
〈   〉

〈    〉
  ( 

 ) and also note that 

〈   〉

〈    〉
  ( 

 )  (
〈   〉

〈    〉
  ( ))

  holds for all 

normal operators, it remaining to show that 

        . For any    , we have  

      
〈     〉 

〈   〉
 
〈      〉 

〈   〉
         (11) 

It should be noted that 
〈   〉

〈    〉
  ( 

 )  

(
〈   〉

〈    〉
  ( ))

 holds for all normal operators.  

3.2 Connection to the product  -numerical range 

The concept of product numerical range of a given 

operator has been greatly studied during the last 

few decades, ( see(Bakić, 1998)(Gawron, Piotr. 

"Z. Pucha la, JA Miszczak, L. Skowronek, K. 
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Zyczkowski., 2011)(Muiruri, 2018)(Zhang, D., L. 

Hou, and L. Ma., 2017)(Waed D., Joachim K. and 

Nazife E. Ö., 2018)and reference therein) and its 

usefulness in quantum theory has been defined. In 

particular, Marcus introduced the idea of 

decomposable numerical range (Wlat Hamad, 

Ahmed Muhammad, 2020) and reference therein. 

In this section we are going to define the 

definition of product  -numerical range, of an 

operator  , and An similar idea is established for 

operators working on a composite Hilbert space 

with a tensor product structure, which we 

investigate. Assume that the underlying Hilbert 

space   is given as a tensor product of two 

(separable) Hilbert spaces   and    where   is 

finite-dimensional of composite dimension      

where          and         .  

         (12) 

In this section we are going to define the 

following definitions.  

Definition 3.6 Let   be a bounded linear 

operator and   be a self-adjoint operator both on 

a separable complex Hilbert space       the 

product  -numerical range is defined as  

     
 ( )  {

〈        (     )〉

〈 (     )      〉
 ⟨ (     ) 

(     )〉                    

}  
(13) 

In order to identify Eq.(13) as a  -numerical 

range with respect to a family of projections we 

introduce 

where 〈 (     ) (     )〉     In other 

words, for any    ̃ one has  

   (     )  
〈       〉

〈 (     ) (     )〉
 

for some elements       and       and all 

   . 

 

 

 Some properties of  product   -numerical range. 

We give some basic properties concerning product 

 -numerical range. 

Proposition 3.7: 

1. For all        then 

  
 (   )    

 ( )    
 ( ).  

2. For all      and    , then 

  
 (    )    

 ( )   ̅  

and                  
 (  )   ̅  

 ( ). 

3. For all      , unitary       and 

     , then  

  
 ((     )

  (     ))     
 ( ).  

4. The product   -numerical does not need to 

be convex, as seen in the following 

example. 

Proof. 

1. Let     
 (   ) then by definition 3.6 

there exist                  such that 

〈 (     ) (     )〉    then 

  
〈(     )  (   )(     )〉

〈 (     ) (     )〉
 

     
〈(     )   (     )    (     )〉

〈 (     ) (     )〉
 

  
〈(     )   (     )〉

〈 (     ) (     )〉
 
〈(     )   (     )〉

〈 (     ) (     )〉
 

     
 ( )    

 ( )  

 ̃  {

                               

  (     )  
〈       〉

〈 (     ) (     )〉

}  

 

 

(14) 
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From this it follows that 

  
 (   )    

 ( )    
 ( )  

2. Let     
 (  ) then by definition 3.6 

there exist                  such that 

〈 (     ) (     )〉    then by properties 

of inner product and linear operators we have 

  
〈(     )    (     )〉

〈 (     ) (     )〉
 

 
 ̅〈(     )   (     )〉

〈 (     ) (     )〉
  ̅  

 ( ) 

Moreover, for      
 (    ) from the first 

property and second,  we can esaily see that  

  
〈(     )  (    )(     )〉

〈 (     ) (     )〉
   

 ( )   ̅ . 

Therefore   
 (    )    

 ( )   ̅  

For the next direction, when     
 ( )   ̅ 

then  

  
〈(     )   (     )〉

〈 (     ) (     )〉
  ̅ 

    
〈(     )   (     )〉

〈 (     ) (     )〉
 
 ̅〈(     )   (     )〉

〈 (     ) (     )〉
 

    
〈(     )   (     )〉

〈 (     ) (     )〉
 
〈(     )    (     )〉

〈 (     ) (     )〉
 

           
〈(     )  (   )(     )〉

〈 (     ) (     )〉
 

Therefore     
 ( )   ̅ implies that 

    
 (    )  

3. Let     
 ((     )

  (     )) for 

unitary operators       and       there 

exist                  such that 〈 (   

  ) (     )〉    

  
〈(     )  (     )

  (     ))(     )〉

〈 (     ) (     )〉
 

 
〈(     )(     )   (     )(     )〉

〈 (     ) (     )〉
 

By properties of product and unitary operators 

we have 

  
〈(         )   (         )〉

〈 (     ) (     )〉
 

 
〈(     )   (     )〉

〈 (     ) (     )〉
 

Therefore   
 ((     )

  (     ))  

  
 ( ). Similary we can see the next direction. 

To proof 4. We give the following example. 

 

Example 3.1: Let’s investgate eigenvaluses of an 

operator   (

    
    
    
    

) and let   be     

identity operator then we know that   is normal 

operator with eigenvaluses       and  . Therefore 

we observe that eigenvaluses   and   are contains 

in    
 ( ), but 

   

 
are not. 

We are going to establish the following results.  

Theorem 3.8  Let   be a bounded linear 

operator and   be a self-adjoint operator both on 

a separable complex Hilbert space      , 

then     ̃( )    
 ( ). 

Proof. We choose an element     
 ( ) then 

there exist       and       , with  

  
〈        (     )〉

〈 (     )      〉
 

Now, we define   to be projection onto the one-

dimentional subspace spanned by       it 

means   (     )  
〈       〉

〈 (     )      〉
 . Therefore 

   ̃. Addithionally,  

(   )(     )  (     )  
〈        (     )〉

〈 (     )      〉
 (15) 

Thus       ̃( )  Conversly: Suppose   

    ̃( )  there exist vectors       and 
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      for which (   )(     )   (   

  )  with   (     )  
〈      〉

〈 (     )      〉
 . 

Then  (     )  (   )(     ) 

 (     )  
〈        (     )〉

〈 (     )      〉
  

Hence it follows that  

  
〈        (     )〉

〈 (     )      〉
   

 ( )  

Corollary 3.9 Let   be a bounded linear operator 

and   be a self-adjoint operator both on a 

separable complex Hilbert space           

we have 

    ̃(             )
( )     (         )

 ( ). 

Proof. First we consider      (         )
 ( ) 

then there is       for          , with 

〈 (            )             〉   . 

Then  

  
〈               (            )〉

〈 (            )             〉
  

In this case, we define   to be projection onto the 

subspace spanned by              it  means 

  (            )  
〈              〉

〈 (            )             〉
, 

therefore    ̃. So we have 

(   )(            )  (            ) 

 
〈               (            )〉

〈 (            )             〉
 

   (            ). (16) 

Hence       ̃(         )
( ).  

Conversely, assume that   

    ̃(         )
( )again there exist vectors 

      such that 〈 (            )    

         〉   and  

(   )(             )   (             ). 

We have 

  (             )  
〈               〉

〈 (            )             〉
. 

which implies that 

(   )(             )  (             )   

〈                (            )〉

〈 (            )             〉
  

Consequently, 

  
⟨               (            )⟩

⟨ (            )             ⟩
 

and      (         )
 ( )   
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