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ABSTRACT 

This study examines the three-dimensional dynamics of two gas 

bubbles near a horizontal rigid wall, focusing on how inter-bubble 

distance affects their shape, size, and jet formation. The Boundary 

Integral Method (BIM) with a novel local smoothing technique is 

employed. Critical parameters including jet velocity, bubble centroid 

movement, bubble radius, and collapse time are computed for each 

bubble to understand their interaction dynamics comprehensively. The 

velocity vector field and pressure distribution surrounding the bubbles 

are analyzed, providing detailed insights into the fluid dynamics. The 

findings demonstrate that inter-bubble distance significantly influences 

their interaction and overall behavior. These results advance the 

understanding of bubble dynamics near rigid boundaries, with potential 

applications across various scientific and engineering disciplines.
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1.Introduction 
Studying the behavior of gas bubbles in the 
vicinity of rigid boundaries is of fundamental 
interest in many applications including marine 
environment and biomedical engineering. 
Understanding this phenomenon is vital for 
improving various operations like mineral 
flotation, water purification, and medical 
ultrasonic imaging. In marine environment, the 
behavior of bubbles concerning the seabed or 
the ship hull influences underwater noise, which 
has impacts on the life of marine organisms 
(Deane and Stokes, 2002). Also, the study of 
bubble dynamics is relevant in the application of 
ultrasound imaging where microbubbles are used 
as contrast agents to improve the visualization of 
blood vessels and tissues (Ferrara et al., 2007). 
In the petroleum industry, bubble dynamics play 
a crucial role in enhanced oil recovery, 
particularly in gas injection techniques, where the 
behavior of bubbles significantly impacts the 
efficiency of oil displacement (Church, 1995). In 
addition, bubble dynamics play a crucial role in 
chemical engineering processes like gas-liquid 
reactions, where the bubble behavior and 
interaction with solid surfaces affect the reaction 
kinetics and product yield (Tsouris and 
Tavlarides, 1994). In wastewater treatment, the 
aeration process in which air bubbles are 
introduced into the water to stimulate microbial 
action is greatly influenced by the behavior of the 
bubbles near surfaces (Deen et al., 2004). 
Two gas bubbles’ behavior has also been 
studied by researchers. These include numerical 
simulation of two bubbles located horizontally 
near a free surface (Zhang and Xiong-Liang, 
2008, Wang et al., 2003, Xi, 2004, Yao et al., 
2007), numerical investigation of a pair of 
bubbles placed vertically near a free surface (Li 
et al., 2012, Saleki-Haselghoubi et al., 2024), 
boundary integral simulation of the motion and 
deformation of bubbles with viscous effects in an 
infinite domain (Zhang and Ni, 2014), 
computational analysis of two bubbles set 
vertically near a rigid wall (Han et al., 2018), and 
study of a pair of acoustic bubbles placed in 
parallel near a horizontal solid wall (Ye et al., 
2015). 
 

Recently the dynamics of bubbles under different 
conditions have been investigated. Specifically, a 
new extended Laplacian smoothing technique 
has been introduced for boundary element 
analysis, aimed at enhancing the accuracy of 
modeling 3D bubble dynamics (Jund et al., 
2024). Another research examined the impact of 
non-isothermal phase changes on the cavitation 
bubble dynamics, emphasizing the challenges 
posed by these variations (Choi et al., 2024). 
Furthermore, shock wave induced by the 
collapse of randomly distributed bubble clusters 
and the resulting pressure loads on the near 
walls was examined (Yang et al., 2024). The 
researchers also carried out theoretical and 
numerical studies to explore the interaction 
between Bjerknes and buoyancy forces during 
underwater explosion near a free surface and 
illustrated the coupled dynamics involved. These 
works contribute valuable knowledge to the 
broader understanding of bubble behavior in 
various environments pertinent to the current 
study (Wang et al., 2024). 
Despite recent advancements, significant gaps 
remain in our understanding of the dynamics of 
two gas bubbles near rigid walls, especially 
concerning how bubble size, wall geometry, and 
fluid properties affect their overall behavior. This 
paper seeks to fill some of these gaps by 
presenting computational results on the 
dynamics of two gas bubbles near a rigid wall, 
providing insights into the underlying 
mechanisms and implications for various 
applications. 
The rest of the paper is arranged as follows. In 
Section 2, the mathematical model is presented. 
Section 3 deals with the numerical 
implementation, and Section 4 discusses the 
local mesh smoothing technique. In Sections 5 
and 6, the results are presented and discussed, 
including validation of the developed BIM code, 
two bubbles dynamics, and pressure and velocity 
fields of the liquid around the bubbles. Finally, in 
Section 7, conclusions are given. 
2 Mathematical model 
       Consider initially two spherical identical gas 
bubbles inside an incompressible, Newtonian, 
and inviscid liquid domain Ω  located near a 
horizontal rigid wall. The bubbles are located at 
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(𝑑∗ 2⁄ , 0,0)  and (−𝑑∗ 2⁄ , 0,0)  of the Cartesian 

coordinates system 𝑥𝑦𝑧 and the horizontal wall is 
located on the plane 𝑧 = −𝑙∗. The bubbles and 
the wall surfaces are denoted by 𝑆𝑏1 = 𝑆𝑏1(𝑡) , 
𝑆𝑏2 = 𝑆𝑏2(𝑡), and 𝑆𝑤 , respectively where 𝜕Ω(t) =
S𝑏1(𝑡) + 𝑆𝑏2(𝑡) + 𝑆𝑤 , and 𝑡  denotes time (see 
Fig.1). In addition, the dimensionless horizontal 
distance between the center of initial bubbles 
denoted by 𝑑∗ = 𝑑 𝑅𝑚⁄  and shortest 
dimensionless vertical distances from the center 
of each bubble to the wall is 𝑙∗ = 𝑙 𝑅𝑚⁄  as shown 
in Fig. 1. Here, 𝑅𝑚 is the maximum radius of the 
bubbles. Since the initial radius of each bubble is 

the same, 𝑅𝑚 remains the same for the bubbles. 
The liquid flow is considered irrotational and 
assumed to be incompressible, Newtonian, and 
inviscid. Based on the potential flow theory, the 

velocity field is defined as �⃑� = ∇⃑⃑ 𝜑 , where 𝜑 
denotes velocity potential that satisfies the 
Laplace’s equation ∆𝜑 = 0 . By utilizing the 
fundamental solution, known as Green's function, 
for Laplace's equation along with Green's second 
identity, the Laplace's equation can be expressed 
in the form of a surface integral (Duffy, 2015, 
Katsikadelis, 2016), 

 

Fig. 1 Schematic front view of two bubbles near a horizontal rigid wall. 

 

𝑐(�⃑� , 𝑡)𝜑(�⃑� , 𝑡) = ∫
𝜕Ω(t)

(
𝜕𝜑(�⃑� , 𝑡)

𝜕�̂�
𝐺(�⃑� , �⃑� )

− 𝜑(�⃑� , 𝑡)
𝜕𝐺(�⃑� , �⃑� )

𝜕�̂�
) 𝑑𝑆(�⃑� ),        (1) 

where �⃑� = (𝑥, 𝑦, 𝑧)  is the field point, �⃑� =

(𝑥0, 𝑦0, 𝑧0) is the source point, and 𝑐(�⃑� , 𝑡) is the 

solid angle at the field point �⃑� , which is given as 

𝑐(�⃑� , 𝑡) = {
4𝜋           �⃑� ∈ Ω

2𝜋    �⃑� ∈ 𝜕Ω(t)
, 

for a smooth surface, whereas for a non-smooth 
surface, we used a formula known as the 4𝜋 rule 
(Li et al., 2012). Furthermore, �̂�  is the outward 

normal from the flow, and 𝐺(�⃑� , �⃑� )  denotes the 

Green’s function defined as 

𝐺(�⃑� , �⃑� ) =
1

‖�⃑� − �⃑� ‖
. 

Following the adiabatic law, Young–Laplace 
equation, unsteady Bernoulli’s equation, and 
applying the far field boundary conditions, the 
dynamic boundary conditions on the bubble 
surface is derived as (Wang et al., 2022, Aziz et 
al., 2019), 
𝑑𝜑

𝑑𝑡
=

𝑝∞ − 𝑝𝑐

𝜌
+

1

2
|∇⃑⃑ 𝜑|2 − 𝑔𝑧 +

𝜎

𝜌
(∇⃑⃑ ⋅ n̂)

−
𝑝0

𝜌
(
𝑉0

𝑉
)
𝜆

,  

where, 𝑝∞ is the hydrostatic pressure at the far 
field of the liquid, 𝑝𝑐  is the condensable vapor 

pressure, 𝜎 is the surface tension coefficient, ∇⃑⃑ ⋅
n̂  is the curvature, 𝑝0  denotes the initial gas 
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pressure inside the bubble and 𝜆 is the ratio of 

specific heats of the gas. In addition, 𝜌 is the fluid 
density, 𝑉 is the intsantanous volume of bubble, 
𝑉0  is the initial volume of bubble, 𝑔  is the 
gravitational acceleration, 𝑧 is 𝑧-coordinate of the 

point 𝑟 = (𝑥, 𝑦, 𝑧). 
On the other hand, the kinematic boundary 
condition on the bubbles surface 𝑆𝑏  requires a 
liquid particle to remain on them, i.e., 
𝑑r 

𝑑𝑡
= ∇⃑⃑ 𝜑,    r ∈ 𝑆𝑏 .     

The boundary condition on the surface of the 
wall, 𝑆𝑤, satisfying the no-penetration condition is 
𝜕𝜑

𝜕�̂�
=  0. 

The maximum bubble radius 𝑅𝑚  and Δ𝑝 = 𝑝∞ −
𝑝𝑐  are considered as the reference scales to 
normalize the variables. Then the above 
equations get reduced to 

𝑑𝜑∗

𝑑𝑡∗
= 1 +

1

2
|∇⃑⃑ ∗𝜑∗|

2 − 𝛿∗
2𝑧∗ + 𝜎∗𝜅∗ − 𝜀 (

𝑉0

𝑉
)
𝜆

,    (2) 

   
𝑑r ∗
𝑑𝑡∗

= ∇⃑⃑ ∗𝜑∗,                                                                         (3) 

𝜕𝜑∗

𝜕n̂
= 0,  

where 𝜀 = 𝑝0 Δ𝑝⁄ . In the remainder of the paper 
all variables and parameters are non-
dimensional; however, for simplicity, the asterisk 
has been omitted. 
3 Numerical implementation 
         In order to solve the boundary integral 
equation (1), first, the domain boundary 𝜕Ω 
(surface of bubbles and wall) is divided into a 
collection of 𝑛𝑒  boundary elements, denoted by 

𝐸𝑖, 

𝜕Ω = ⋃𝐸𝑖

𝑛𝑒

𝑖=1

  and  𝐸𝑖 ∩ 𝐸𝑙 ≡ ∅     when  𝑖 ≠ 𝑙, 

where 𝑛𝑒  is the number of boundary elements 
that span the domain boundary 𝜕Ω . The 
boundary elements are taken to be simple, using 
a single standard triangular element in 2-D. 
Since the surface of bubbles and the rigid wall 
are smooth, the integrals over 𝜕Ω  can be 
transformed into sums of integrals over the 

boundary elements 𝐸𝑖, i.e., 

𝑐(�⃑� , 𝑡)𝜑(�⃑� , 𝑡) = ∑

𝑛𝑒

𝑖=1

∫
Ei

(
𝜕𝜑(�⃑� , 𝑡)

𝜕�̂�
𝐺(�⃑� , �⃑� )

− 𝜑(�⃑� , 𝑡)
𝜕𝐺(�⃑� , �⃑� )

𝜕�̂�
)𝑑Ei,               (4)    

Because the boundary elements are simple 
triangles, each defined by a group of three 
element nodes, the collection of the nodes of the 
elements are defined by the global grid nodes. 
Next, the surface of each boundary element is 
described in a parametric form by mapping the 
triangular element from three-dimensional space 
to a right isosceles triangle in the 𝜉𝜂 parametric 

plane. The position vector r , the velocity potential 
𝜑  and its normal derivative 𝜓 = 𝜕𝜑/𝜕𝑛  are 
interpolated linearly along the triangle of 

boundary element 𝐸𝑘 

 r 𝑘 = 𝜉r 1
𝑘 + 𝜂r 2

𝑘 + (1 − 𝜉 − 𝜂)r 3
𝑘,  

𝜑𝑘 = 𝜉𝜑1
𝑘 + 𝜂𝜑2

𝑘 + (1 − 𝜉 − 𝜂)𝜑3
𝑘, 

 𝜓𝑘 = 𝜉𝜓1
𝑘 + 𝜂𝜓2

𝑘 + (1 − 𝜉 − 𝜂)𝜓3
𝑘 . 

Therefore, Eq. (4) can be represented as 

𝑐𝑘𝜑𝑘 = ∑

𝑒𝑛

𝑖=1

∑

3

𝑗=1

(𝐶𝑗
𝑖𝜓𝑗

𝑖 − 𝐷𝑗
𝑖𝜑𝑗

𝑖),    𝑘 = 1, . . . , 𝑛𝑔,    (5) 

 where 𝑛𝑔  is the number of global nods in the 

grid, and the influence coefficients 𝐶𝑗
𝑖  and 𝐷𝑗

𝑖 are 

surface integral over a parametric plane of 

boundary element 𝐸𝑖  according to local function 

node 𝑗 . By combining the nodes from all 
neighboring triangles that share a common node 
and after performing summation, Eq. (5) 
becomes, 

𝑐𝑘𝜑𝑘 = ∑

𝑛𝑔

𝑖=1

(𝐴𝑖𝜓𝑖 − B𝜑𝑖),    𝑘 = 1, . . , 𝑛𝑔,            (6)  

where 𝐴𝑖  and 𝐵𝑖  are the altered influence 
coefficients due to the summation of triangles 
around their common node. Equation (6) can be 
expressed in matrix form as 
𝐜 ⋅ 𝛗 = 𝐀𝛙 − 𝐁𝛗,                            (7) 
where 𝐀  and 𝐁  are the 𝑛𝑔 × 𝑛𝑔  influence 

coefficient matrices. The diagonal elements of 𝐀 
are integrated analytically, while the non-
diagonal elements of 𝐀  and B are calculated 
numerically using seven-point Gaussian 
quadrature. 
Rewriting the matrix form (7) as a linear system 



 

 
54 

   Aziz.                                                                                                                                                                                ZJPAS (2024), 36(6);50-60      

 

ZANCO Journal of Pure and Applied Sciences 2024 

 

by putting unknown values in LHS and known 
values in RHS (where 𝜓 = 0 on the wall and 𝜑 on 

the bubbles are known, while 𝜓 on the bubbles 
and 𝜑 on the wall are unknown), then 

[
𝐀𝑏𝑏 −𝐁𝑏𝑤

𝐀𝑤𝑏 −𝐁𝑤𝑤

] [
𝛙𝑏

𝛗𝑤

]

= [
𝐁𝑏𝑏 −𝐀𝑏𝑤

𝐁𝑤𝑏 −𝐀𝑤𝑤

] [
𝛗𝑏

𝛙𝑤

].                   (8)   

By solving the linear system of equations (8), the 
normal velocity 𝜓 on the bubbles is found. The 
tangential velocity of 𝜑  can be obtained using 
linear interpolation of the velocity potential 𝜑 
along each triangular element (Wang and 
Manmi, 2014, Wang et al., 2015). Then, 

�⃑� = �⃑� ∥ + �⃑� ⊥,      
where �⃑� ∥  is the normal velocity and �⃑� ⊥  is the 

tangential velocity. 
 
The positions of the bubbles grid nodes 𝑟  and the 
velocity potential 𝜑 are updated using (2) and (3). 
The following predictor-corrector scheme is used 
for the position, 

𝑟 𝑝 = 𝑟 𝑖 + d𝑡𝑖  �⃑� 𝑖,       

𝑟 𝑖+1 = 𝑟 𝑖 + 0.5 d𝑡𝑖[�⃑� 𝑖 + �⃑� 𝑝].                

For the velocity potential let  

𝑓(𝑟 𝑖) = 1 + 0.5|∇⃑⃑ 𝜑(𝑟 𝑖)|
2 − 𝛿2𝑧(𝑟 𝑖) + 2𝜎𝜅(𝑟 𝑖)

− 𝜀 (
𝑉0

𝑉(𝑟 𝑖)
)
𝜆

, 

then 
𝜑𝑝 = 𝜑𝑖 + d𝑡𝑖  𝑓(𝑟 𝑖), 

𝜑𝑖+1 = 𝜑𝑖 + 0.5 d𝑡𝑖  (𝑓(𝑟 𝑖) + 𝑓(𝑟 𝑝))), 

where 𝑟 𝑖+1  and 𝜑𝑖+1  are the position 𝑟  and 

velocity potential 𝜑  at the next time step, 
respectively, and d𝑡𝑖  is time-step chosen as 
follows to save the CPU time, 

d𝑡𝑖 =
d𝜑

max|𝑓(𝑟 𝑖)|
.        

Here, d𝜑 is a constant and 𝜅 is the mean 
curvature calculated by the algorithm given in 
(Dong and Wang, 2005). 
In this section, the procedure of calculating the 
pressure and velocity fields of the fluid around 
the two bubbles in 𝑧𝑥-plane is given. Based on 

the potential flow theory, the pressure field 𝑝 in 
the liquid domain surrounding the bubbles can be 
found using the unsteady Bernoulli equation as 

follows (Wu, 1998, Tanizawa, 1995), 

𝑝 = 1 −
𝜕𝜑

𝜕𝑡
−

1

2
|∇⃑⃑ 𝜑|2 − 𝛿2𝑧.                        (9)   

The liquid domain around bubbles and bounded 
at the bottom by the rigid wall is discretized to 𝑚𝑒 
elements with 𝑚𝑓  nodes in the 𝑧𝑥 -plane. The 

calculation of 𝜑𝑡  in fluid needs the values of 𝜑𝑡 
and 𝜕𝜑𝑡/𝜕𝑛  on the boundaries. Using the 
unsteady Bernoulli equation, 

𝜑𝑡 = 1 −
1

2
|∇⃑⃑ 𝜑|2 − 𝛿2𝑧 − 𝜀 (

𝑉

𝑉0
)
𝜆

,                    (10)  

and to calculate 𝜕𝜑𝑡/𝜕𝑛 on the bubble surface, 
the BIM (1) is used, 

𝑐(�⃑� , 𝑡)𝜑𝑡(�⃑� , 𝑡)

= ∫
𝜕Ω(t)

(
𝜕𝜑𝑡(�⃑� )

𝜕�̂�
𝐺(�⃑� , �⃑� )

− 𝜑𝑡(�⃑� , 𝑡)
𝜕𝐺(�⃑� , �⃑� )

𝜕�̂�
) 𝑑𝑆(�⃑� ).                    (11)    

Finally, the boundary integral equation is used to 
find 𝜑𝑡, 

𝜑𝑡(𝑟 𝑖) =
1

4𝜋
∑

𝑁

𝑗=1

(
𝜕𝜑𝑡(�⃑� 𝑗)

𝜕𝑛
𝐴𝑖𝑗 − 𝜑𝑡(�⃑� 𝑗)𝐵𝑖𝑗) ,    𝑖

= 1;𝑚𝑓 , (12)    

and to evaluate 𝜑𝑥, 𝜑𝑦, and 𝜑𝑧 at a fluid point, 

𝜑𝑥(𝑟 𝑖) =
1

4𝜋
∑

𝑁

𝑗=1

(
𝜕𝜑𝑥(�⃑� 𝑗)

𝜕𝑛
𝐴𝑖𝑗 − 𝜑𝑥(�⃑� 𝑗)𝐵𝑖𝑗) ,    𝑖

= 1;𝑚𝑓 ,      (13)  

𝜑𝑦(𝑟 𝑖) =
1

4𝜋
∑

𝑁

𝑗=1

(
𝜕𝜑𝑦(�⃑� 𝑗)

𝜕𝑛
𝐴𝑖𝑗 − 𝜑𝑦(�⃑� 𝑗)𝐵𝑖𝑗) ,    𝑖

= 1;𝑚𝑓 , (14)    

𝜑𝑧(𝑟 𝑖) =
1

4𝜋
∑

𝑁

𝑗=1

(
𝜕𝜑𝑧(�⃑� 𝑗)

𝜕𝑛
𝐴𝑖𝑗 − 𝜑𝑧(�⃑� 𝑗)𝐵𝑖𝑗) ,    𝑖

= 1;𝑚𝑓            (15)   

 where 𝑟 𝑖 is the coordinates of the 𝑖th fluid point, �⃑�  
is the boundary point, and 

𝐴𝑖𝑗 = ∫
𝐸

𝐺(𝑟 𝑖, �⃑� 𝑗)𝑑𝐸(�⃑� ),                       (16) 

𝐵𝑖𝑗 = ∫
𝐸

𝜕𝐺(𝑟 𝑖, �⃑� 𝑗)

𝜕𝑛
𝑑𝐸(�⃑� ).                     (17) 

After finding 𝜑𝑡  and ∇𝜑 = (𝜑𝑥, 𝜑𝑦, 𝜑𝑧) in the fluid 

domain around the bubbles, they are emplyed to 
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find the pressure at fluid points using (9). 
4 Local mesh smoothing technique 
       Surface smoothing is essential for 
maintaining the stability of dynamic modules. In 
this work, we employ a modified version of 
Laplace smoothing, an iterative process that 
relocates each mesh node to the barycenter of 
its neighbors. This process comprises two 
substeps: shrinking and expansion (Aziz et al., 
2019, Rypl and Nerad, 2016). 
Additionally, we introduce a novel technique 
called Local Mesh Smoothing (LMS). This 
method aims to smooth a subgroup of nodes 
belonging to the global nodes of bubbles 
boundaries. 
Let 

𝐗 = {�⃑� 𝑖}𝑖=1

𝑛
, 

be the sequence of all nodes on the bubble 
surface, where 𝑛 is the number of bubble nodes, 
and let 

𝐒 = {�⃑� 𝑖: �⃑� 𝑖 ∈ 𝐗 ∧ 𝐺(�⃑� 𝑖) ≤ 𝑀 }
𝑖=1

𝑚
, 

be a subgroup of 𝐗, where 𝑀 ∈ ℝ and 𝐺:ℝ3 ⟶ ℝ 
is the same function. 
Also, suppose that 𝐻:𝐗 ⟶ ℤ𝑚 is the one-to-one 
function from nodes to its index in triangulation; 
therefore, 

𝐻(𝐒) = 𝐒ℎ ⊆ ℤ𝑚, 
which can locate the nodes in 𝐒 by 

𝐒 = 𝐻−1(𝐒ℎ), 
Then, the smooth solution is applied only to 
target nodes on the bubble surface (often part of 
the jet surface). This technique may occasionally 
create a dividing line between two areas due to 
differences in shape size, which arise from 
applying smoothing in one area and not in the 
other. However, with LMS, the likelihood of this 
issue is virtually eliminated. LMS operates in two 
steps during each iteration: one step shrinks the 
size while the other expands it, ensuring that the 
overall shape size remains nearly constant. 
5 Validation 
        The validation of a numerical method is 
essential to ensure the accuracy of the numerical 
results. In this section, the current numerical 
results associated with two identical bubbles 

oscillating near each other in an infinite fluid 
domain is evaluated through the comparison with 
numerical results of Wang and Khoo (Wang and 
Khoo, 2004). The parameters are taken as in 
(Wang and Khoo, 2004), where the initial bubble 
radus are 𝑅0 = 0.1391 , the vertical distance 

between theo bubbles is set to 𝑑∗ = 1.8 , 𝛿 = 0 
and 𝜀 = 120 . Fig. 2(a) presents the obtained 
result, which is congruent with the result (Fig. 2c) 
of Wang and Khoo (Wang and Khoo, 2004) in 
terms of shape, size, and collapse time. Besides, 
our numerical results associated with two 
bubbles oscillating near each other in an infinite 
fluid domain is also validated by comparing with 
the numerical result of Li et al. (Li et al., 2012). 
The parameters set same as those given in (Li et 
al., 2012), where 𝑅0 = 0.1651 , 𝑑∗ = 1.5 , 𝛿 = 0 
and 𝜀 = 100. The shape in Fig. 2(b) is our result, 
which is smoother than the result in (Li et al., 
2012) (Fig. 2d). Also, unlike the result in (Li et al., 
2012) shown in Fig. 2(d), the bubbles in our 
simulations have reached the final stage of 
collapse. 

 

Fig. 2 Comparison of the current 3D BEM results related to 
the 3D bubbles shape at the end of collapse phase for (a) 

𝑑∗ = 1.8 and (b) 𝑑∗ = 1.5 with numerical results of (c) Wang 
and Khoo (2004) and (d) Li et al. (2012). 
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To further enhance our confidence in the 
numerical modeling, we considered a problem 
where two bubbles oscillate near a horizontal 
solid wall with the dimensionless distance 
between the bubbles being 20 (𝑑∗ = 20) . This 
distance likely reduces the effect of two bubbles 
on each other, meaning their influence on one 
another is largely negligible. The results are 
illustrated in Fig. 3, which demonstrates that the 
two bubbles adopt shapes similar to those 
observed when positioned individually near a 
horizontal solid wall. A slight deviation in the 
direction of the bubble jet is observed, directing 
towards the other bubble. This suggests that our 
numerical results are reliable. 

 
Fig. 3 Bubbles shape at the end of collapse phase as they 
oscillate near a horizontal rigid wall for 𝑑∗ = 20; (a) left 
bubble and (b) right bubble. 

6 Results and discussions 
        To numerically study the dynamics of two 
bubbles near a horizontal solid wall, where each 
bubble is one unit away from the solid wall, i.e. 
( 𝑙∗ = 1  ) as shown in Fig. 1, five different 
distances 𝑑∗  between the centers of the two 
bubbles are considered, and the effect of these 
distances on the shape of the bubbles and their 
jets are sought. In addition, the effects of the 
distance 𝑑∗  on the bubble radius, jet velocity, 
bubble centroid motion, bubble lifetime, and jet 
direction at the end of the bubble collapse are 
investigated. The velocity and pressure fields are 
also found around the two bubbles in the liquid 
domain at the end of the bubble collapse. 
This numerical modeling considered five 
distances: 𝑑∗ = 2, 2.5, 3, 3.5, and  4 . In addition, 

the initial radius is taken 𝑅0 = 0.165, and initial 
pressure 𝜀 = 100  and 𝛾 = 1.4  for each bubble. 
Furthermore, the dimensions of the wall are fixed 
at 20 𝑅𝑚 long and 10 𝑅𝑚 wide. 
6.1 Effect of 𝐝∗ on bubbles shape, size, 
centroid movement, and jets 

        This study analyzes the dynamics of two 
gas bubbles near a rigid wall. The objective is to 
understand the effect of the distance between 
the bubbles on their shape, size, centroid 
movement, and jets.  
 

 
Fig. 4 3D bubble shapes during the expansion and 
collapse of the left bubble as it oscillates near the right 
bubble and the horizontal rigid wall with 𝑑∗ = 2, shown from 
the front view (first row), top view (second row), and side 

view (third row). 
The left bubble shapes during the first oscillation 
cycle for 𝑑∗ = 2 are shown in Fig. 4 from three 
viewpoints, which are the front view (𝑥𝑧 plane), 
the top view (𝑥𝑦 plane), and the side view (𝑦𝑧 
plane). It can be seen that the bubble starts to 
expand from its initial size at 𝑡∗ = 0 and reaches 
its maximum size at 𝑡∗ = 1.34 . The bubble 
remains spherical at the beginning of the 
expansion phase because the distances between 
the bubbles and between the bubble and the 
rigid wall are still substantial. However, in the 
final stages of expansion, the bubble surface 
approaches the right bubble and the rigid wall, by 
being attracted to them, and thus, loses its 
spherical shape that is clearly observed at 𝑡∗ =
0.70  and 𝑡∗ = 1.34 .  The bubble then collapses 
and a liquid jet is formed at 𝑡∗ = 2.34, which is 
directed towards the origin. The bubble shape 
then takes on a kidney-like shape as the jet 
evolves from the front view. Finally, the jet 
impacts the far side of the bubble surface at 𝑡∗ =
2.61. The bubble shape during the collapse, as 
seen from the top view, shows that the bottom 
part of the bubble extends along the 𝑥 -axis. 
Additionally, portion of the bubble near the 
adjacent bubble extends along the 𝑧-axis, which 
is clearly observed from the side view. 
Figures 5 illustrates the shapes and jets of the 
two gas bubbles near a rigid wall for various 
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dimensionless distances 𝑑∗. Based on Fig. 5 and 
Table 1, it is observed that the two gas bubbles 
are positioned symmetrically around the vertical 
axis at different distances. 
In all scenarios, the bubbles exhibit identical 
shape, size, and movement relative to each 
other. However, these characteristics are 
different for different conditions. As 𝑑∗ increases 
from 2 to 4, the minimum radius of the bubbles at 
collapse decreases from 0.511 to 0.419. The 
lifetime of the bubbles also decreases from 2.606 
to 2.470 as 𝑑∗  increases, while the jet velocity 
before collapse increases from 4.02 to 4.73. 
When the bubbles are closely positioned (𝑑∗ =
2 ), their centroids move towards each other 
along the x-axis by 0.128 units and towards the 
rigid wall along the z-axis by 0.132 units. As 𝑑∗ 

increases, movement along the 𝑥-axis decreases 
while movement along the 𝑧 -axis increases, 
reaching 0.41 units and 0.201 units respectively 
at 𝑑∗ = 4. 

 

Fig. 5 Bubbles shape for 𝑙∗ = −1 at the jet impact for different 

values of 𝑑∗. 

 
The jets consistently maintain a nearly spherical 
shape under all conditions. Their angle changes 
from 45 degrees for 𝑑∗ = 2  to 70 degrees for 
𝑑∗ = 2 relative to the horizontal line, increasingly 

directed towards the rigid wall as 𝑑∗  increases. 
The shape of the bubbles also changes, with the 
upper part becoming smaller than the lower part 
near the rigid wall as 𝑑∗ increases. 
The color scale in the figures indicates 𝜑 , 
representing the bubble surface's potential. This 
potential on the jet surface increases from 3.66 
for 𝑑∗ = 2, increasing further in other cases. 
Table 1 Jet angle, bubble radius, bubble lifetime, maximum 
jet velocity, bubble centroid movement along the 𝑥 and 𝑧 
directions at the final stage of the collapse phase for 
different distances 𝑑∗. 

𝒅∗ 𝜽𝒋𝒆𝒕 𝑹∗ 𝒗𝒋𝒆𝒕
∗  𝑪𝒙

∗  𝑪𝒛
∗ 𝒕∗ 

2 45º 0.511 4.02 0.128 0.132 2.606 

2.5 50º 0.469 4.46 0.103 0.165 2.577 

3 57º 0.443 4.55 0.074 0.188 2.546 

3.5 62º 0.421 4.71 0.053 0.199 2.506 

4 70º 0.419 4.73 0.041 0.201 2.470 

 
According to Table 1 the jet angle in the final 
stage of collapse increases by 55.55% in the 
case with 𝑑∗ = 2.0 with respect to th ecase with 
𝑑∗ = 4.0. Also, average jet velocity increases by 

17.66%, the centroid motion along the 𝑧 -axis 
increases by 52.27%, and the potential increases 
by 5.46%, while the equivalent radius decreases 
by 18%, the centroid motion along the x-axis 
decreases by 67.66%, and bubble lifetimes 
decreases by 5.22%. 
6.2 Pressure field and velocity vectors for 
different values of 𝐝∗ 
        The pressure field and velocity vectors in 
the liquid around the two bubbles near the rigid 
wall are calculated on the symmetry plane 𝑦∗ = 0 
for all cases 𝑑∗ = 2.0, 2.5, 3.0, 3.5 and, 4.0 . Here, 
the triangulation mesh is used to discretize the 
plane surface, and the velocity potential values 
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and pressure on the plane points are determined 
using Eqs. (9) to (17). 
The colors in Fig. 6 represent the pressure field, 
while the arrows represent the velocity vectors 
for the case with 𝑑∗ = 2 in 𝑥𝑧-plane around the 
bubbles above the rigid wall. The color bar 
shows the non-dimensional pressure values. The 
peak pressures are located above the center of 
the jets for each bubble, where the maximum 
pressure reaches 2.6 for this case (Fig. 6a) but 
the minimum pressure appears in some places 
between the bubbles that is equal to 0.5 in this 
case. The velocity vectors revolve around the 
bubbles and show the jets flow direction. 
The area of the peak pressure gradually gets 
smaller, and its position changes as it moves 
upward in other cases including 𝑑∗ =
2.5, 3.0, 3.5, and 4.0 , but the peak pressure 
increases with 𝑑∗. In the case with 𝑑∗ = 2.5 (see 
Fig. 6b), the peak pressure region deviates 
slightly from the center of the jet and reaches a 
value of 3.35, while the velocity vectors has the 
same magnitude as in the case with 𝑑∗ = 2. 
But in the case with 𝑑∗ = 3.0, the shift of the peak 
pressure upward is shown in Fig. 6c, and 
reaches a value of 4.36. In this case, the velocity 
vectors between the bubbles seem to be the 
same as in previous case and attain their 
maximum magnitude in jets. 
Fig. 6(d) and Fig. 6(e) depict the pressure field 
velocity vectors in the cases 𝑑∗ = 3.5  and 𝑑∗ =
4.0 , respectively, where changes in the peak 
pressure area and location in these two cases 
are very clear. The peak pressure in these last 
cases continues increasing, becoming 5.57 in the 
case with 𝑑∗ = 3.5, and finally, it rises to 6.43 in 
the case with 𝑑∗ = 4.0 . According to these 
findings, the peak pressure rises by 147.3% 
when comparing the scenario with 𝑑∗ = 2.0 to the 

scenario with 𝑑∗ = 4.0 , indicating a substantial 
change in pressure. 

 
Fig. 6 Pressure field and velocity vectors in the liquid 

around bubbles for different values of 𝑑∗. 
7 Conclusions 
        The Boundary Integral Method (BIM) is used 
to simulate the dynamics of two 3D bubbles near 
a rigid wall, employing a local mesh smoothing 
technique to ensure accurate results. The 
bubbles remain intact until the final stage of the 
collapse phase, particularly when positioned in 
close proximity. Based on our numerical results, 
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we can conclude the following: 

• As the distance ( 𝑑∗ ) between the 
centers of the two bubbles increases, 
their size decreases while the angle of 
the jets increases. The jet's shape 
remains rounded, but the bubbles' 
shapes become more deformed and 
less symmetric with increasing 𝑑∗. Jets 
become more inwardly directed and 
increasingly influenced by the wall as 
𝑑∗ increases. 

• Bubble lifetime decreases as 𝑑∗ 
increases, correlating with an increase 
in average jet velocity. 

• The centroid movement of the bubbles 
decreases toward the x-axis but 
increases toward the 𝑧 -axis as 𝑑∗ 
increases. This indicates that the 
interaction between the bubbles and 
the horizontal wall strengthens as the 
dimensionless distance 𝑑∗  increases, 
while the interaction between the 
bubbles weakens. 

• The area of peak pressure for each 
bubble decreases, while its value 
increases as the distance 𝑑∗ increases. 

These findings enhance our understanding of 
bubble dynamics near rigid boundaries and hold 
potential applications in areas like underwater 
acoustics, cavitation damage prevention, and 
microfluidics. Future research could investigate 
the practical engineering implications of these 
results. 
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