

 ZANCO Journal of Pure and Applied Sciences
 The official scientific journal of Salahaddin University-Erbil

 https://zancojournals.su.edu.krd/index.php/JPAS

 ISSN (print):2218-0230, ISSN (online): 2412-3986, DOI: http://dx.doi.org/10.21271/zjpas

 RESEARCH PAPER

Improved Mixed Neighborhood Tabu Search by

Random Selection for Combinatorial Interaction Testing

Imad H. Hasan , Moayad Y. Potrus

Department of Software and Informatics Engineering, College of Engineering , Salahaddin University-Erbil, Kurdistan Region,

Iraq.

A B S T R A C T:

 Combinatorial interaction testing (CIT) is a technique used to find minimal test suite among configuration options of a System

Under Test (SUT) that uses a Covering Array (CA) as a combinatorial structure. CIT is very effective for reducing the costs of the

testing process that uses a sampling technique instead of exhaustive testing. This paper proposes the modification of Mixed

Neighborhood Tabu Search (RMiTS) algorithm using the random selection strategy. The base MiTS algorithm is originally used

for generating t-way Mixed Covering Array (MCA). The modification improves the algorithm performance (running time) to

cover all possible input configuration combinations to produce the optimal or near-optimal test suites. The modified algorithm is

evaluated through a comparison against the base MiTS algorithm to confirm the performance improvements. Also, it is compared

to a state-of-the-art algorithm known as Advanced Combinatorial Test Tool (ACTS) to confirm its efficiency. The experimental

results confirm the effectiveness of the modifications that improved the performance for all applied benchmarks, and also it shows

that RMiTS is more efficient than ACTS.

KEY WORDS: Combinatorial Interaction Testing, Covering Array, Combinatorial Optimization, Software Testing

DOI: http://dx.doi.org/10.21271/ZJPAS.32.5.1

ZJPAS (2020) , 32(5);1-19 .

1. INTRODUCTION

Software Testing is a very important

stage in the process of Software

Development Life Cycle (SDLC). A high-

quality software needs an exhaustive testing

process and large test suites to detect most

of the bugs in the developed software.

However, exhaustive testing may require

higher cost budget and longer development

time (Ahmed, 2016).

Instead of exhaustive testing, a sampling

technique is used to minimize the size of the test

suites. This means, generating a high-quality test

suite is a game-changer, that reduces the testing

time and development costs without affecting the

quality of the software. Eventually, it can detect

most of the bugs in less effort. Recently, the

demand for high customizable software systems

has increased. These type of systems reuses the

ready components from a set that belongs to one

core to produce newly developed software. Thus,

the highly-configurable systems are becoming the

direction and the future of software development.

Significant reusability of highly-configurable

systems notably reduced the development cost

(Lin et al., 2016). The highly-configurable

systems comprise many ready components that

* Corresponding Author:

Imad H. Hasan

E-mail: imad.hadi@su.edu.krd
Article History:

Received: 07/09/2019

Accepted: 07/01/2020

Published: 13/10 /2020

https://zancojournals.su.edu.krd/index.php/JPAS
http://dx.doi.org/10.21271/ZJPAS.32.5.1

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
2

ZANCO Journal of Pure and Applied Sciences 2019

can interact with each other. Each component has

many input configurations options. Evidence

revealed that software bugs occur during the small

number of the interaction of these input

configuration options (Kuhn et al., 2013). As

mentioned by Cohen et al. (2007), the high-

configurable systems made the software testing a

threat to the quality of software than before, which

forces the software tester to exhaustively test the

combination of all input options. Therefore, this

leads to more time consuming on the testing

process that increases the development costs too.

Testing all the combinations of parameter values

is not always feasible. Instead, a sampling

technique is used to detect faults from parameter

combinations. This technique called

Combinatorial Interaction Testing (CIT) (Cohen et

al., 1997, Cohen et al., 2007). It reduces the size

of the exhaustive test suite dramatically, in such a

way, that cover all possible value combinations at

least once.

The CIT techniques are considered as an

NP-hard problem (Nie and Leung, 2011). Thus,

many approaches have been proposed in the

literature to solve this problem. Most two popular

approaches are meta-heuristic and greedy, the

approaches are either constrained or

unconstrained, the systematic literature studies

including Nie and Leung (2011) that summarizes

an overview of CIT approaches and applications.

The book by Kuhn et al. (2013) covers a practical

aspect and definitions of CIT.

The above-mentioned studies categories

the CIT approaches based on generation strategies

into greedy algorithms, meta-heuristic algorithms

and mathematical methods. The upcoming

paragraph highlights the most relevant works of

t h e f i r s t t w o p o p u l a r c a t e g o r i e s .

First, greedy algorithms are widely used

algorithms for solving CIT problems. Basically,

there are two generation strategies in greedy

algorithm one-parameter-at-a-time (OPTAT) and

one-test-at-a-time (OTAT). An example of

OPTAT is in-parameter-order IPO algorithm that

starts by generating CA with only t parameters,

then the algorithm extends the CA by adding one

parameter at each iteration, there are two types of

CA extension of horizontally and vertically

consequently, this process is repeated until all t-

tuples are covered. The IPO algorithm originally

proposed by Lei and Tai (1998) for generating 2-

way CA, but it was generalized for t-way CA

generator as in-parameter-order-general (IPOG)

b y L e i e t a l . (2 0 0 7) .

A Combinatorial Test Generation Tool

(ACTS) is a tool that presented by Yu et al. (2013)

that composed of IPOG, IPOG-D, IPOG-F, and

IPOG-F2 algorithms; this tool can handle large

SUT models including large constraint sets with

high interaction strength that known

as the s tate -of- the-art greedy algori thm.

Another OTAT greedy strategy that

constructs CA by generating one test at each

iteration until all t-tuple are covered, the purpose

of using such a strategy is to cover more t-tuples at

each iteration. A popular tool of this strategy is

Automatic Efficient Test Generator (AETG) that

firstly proposed by Cohen et al. (1997) which was

the first greedy algorithm that adopted OTAT

strategy and a general framework of OTAT

algorithm initiated by Bryce et al. (2005). Also,

the proposed method uses a greedy OTAT strategy

in the initial solution and test case generation as

d e s c r i b e d s e c t i o n i n 3 . 2 . 1 .

Second, the meta-heuristic algorithms

which use random guess and evolving solutions

with each cycle to reach a solution or best solution

(Potrus, 2016), such as Genetic Algorithm (GA)

(Ghazi and Ahmed, McCaffrey), Simulating

Annealing (SA) (Cohen et al., 2003b, Cohen et

al., 2003a, Cohen et al., 2003c), Tabu Search (TS)

(Gonzalez-Hernandez and Torres-Jimenez) and

Particle Swarm Optimization (PSO) (Ahmed and

Zamli, 2011, Ahmed et al., 2012, Kalaee and

Rafe, 2016, Ahmed et al., 2017), that have a

similar strategy for generating CA, usually starts

by constructing a partial or incomplete CA then

applies modifications or transformations to it, until

it covers all the t-tuples. At each iteration, the

algorithm moves toward an unexplored region so

that it tries to cover all possible missed t-tuples as

m u c h a s p o s s i b l e .

Cohen et al. (2003b) used the meta-

heuristic Simulating Annealing (SA) algorithm to

construct covering arrays for . The

SA algorithm first generates an initial solution

randomly as an N by k matrix. Then the

temperature reduced by a constant value close to

one, the cost of the evaluation function is the

number of uncovered t-tuples. Within that year,

Cohen et al. (2003a) integrated an algebraic

construction technique to SA, this approach called

A u g m e n t e d S i m u l a t e d A n n e a l i n g .

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 3

ZANCO Journal of Pure and Applied Sciences 2019

Gonzalez-Hernandez and Torres-Jimenez

(2010) used a tabu search algorithm for generating

MCA and their contribution was using the mixture of

three neighborhood functions called MiTS, that

selects the functions based on a random probability.

However this work is improved later in (Gonzalez-

Hernandez, 2015), they changed a way of using

MiTS to generate smaller MCAs than the best found

so far, for interaction strength . The

improvements included a parameter tuning based on

statistical tests identified the values that significantly

affect the performance of MiTS. To verify the

efficiency of the proposed improvements, the results

of MiTS was compared and analyzed statistically

against popular approaches included the best bound

MCAs for interaction strength t {2 − 6} that have

been reported to date in the literature for SA and

IPOG algorithms, and others. The improved MiTS

showed that there were notable differences between

the obtained solutions and the best previously

reported bounds.

Besides, Avila-George et al. (2012) used the

mixed neighborhood functions with SA to construct

MCA with The MCA generation process

begins with an initial solution that uses the maximum

Hamming-distance among many candidate test cases,

in the algorithm uses two neighborhood functions to

optimize the MCA matrix.

Ahmed et al. (2012) proposed a Particle

Swarm Test Generator (PSTG) to construct a

covering array for . PSTG randomly

generates test cases and chooses the one that has a

maximum interaction coverage that utilizing the PSO

with a greedy strategy for identifying the test cases.

The main problem of the PSO based algorithms is

related to PSO that needs many parameter tunings.

However, the improved MiTS in (Gonzalez-

Hernandez, 2015) reported the best bounds

(minimum possible test suite sizes). But it still suffers

from low performance (long running time). Thus, in

this work, we modified the MiTS using random

selection strategy into random MiTS (RMiTS), the

major modifications targeted the neighborhood

functions N2 and N3 to improve the performance

(reducing running time) of the neighborhood

functions with random selection techniques instead

of normal sequential selection. However, one of the

downsides of the tabu search algorithm is suffering

from local minima (Ahmed et al., 2012). To

overcome this problem, one of the neighborhood

functions is optimized in which the behavior of the

evaluation function is modified from local best

evaluation into a global best evaluation, that helped

the tabu search to diversify the search.

The reminder sections of this paper are

structured as follows: Section 2 starts with an

example to introduce the combinatorial interaction

testing and shows the mathematical notion of CA.

Section 3 presents the proposed modifications of the

base MiTS algorithm. Section 4 shows the design of

experiments and discusses the efficiency and

performance evaluation of the proposed method. The

final section concludes this paper.

2. MATERIALS AND METHODS

This section presents an overview of the

theoretical backgrounds on CIT and how to model

the system under test. Alongside that, it explains the

general concepts and mathematical notation of

combinatorial data structures.

2.1. Combinatorial Interaction Testing

To illustrate the concept of CIT assume there

is a System Under Test (SUT) that has a set of k

input parameters or configurations such that
 and each parameter has a set of n

values or options such that
equivalents to the domain of . For this purpose, let

us consider Figure 1 as a SUT which is a user

interface of Tesla car autopilot settings.

For example, Table 1 shows a model of the

SUT, that takes eight configuration parameters, the

first five parameters have two values or options, the

seventh parameter has three options, and the last

parameter has four options. If all the parameter

options of the current SUT are exhaustively tested

together it will produce test

cases, imagine if the only parameter with four

options is added to the SUT, the number of test cases

will increase to 1 the test suite size

will growth exponentially, which is impossible to

apply due to time and budget constraints. Though, a

sampling technique such as CIT should be applied to

overcome this problem.

CIT is a combination of parameter values,

with a specific interaction strength usually denoted as

t and the value of . CIT sampling

techniques will reduce the number of test cases

dramatically for example in the current SUT instead

of applying all 768 test cases to cover all possible

value combinations it needs only 12 test cases to

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
4

ZANCO Journal of Pure and Applied Sciences 2019

cover all possible t-tuple value combinations at least

once as shown in Table 2. To understand the

interaction strength t, let’s consider given SUT that

receives three parameters each with two values, such

that , and X be a function that takes t

parameter combinations, then computes the cartesian

product of their possible values that produces t-tuple

sets, for example when t = 2 it means the 2 − way

combination of parameters which is pairwise

combination such that X(P1,P2), X(P1,P3), X(P2,P3) as

demonstrated in Figure 2.

Table 2 shows a test suite that equivalents to

2−way CIT of the SUT in Figure 1 which means the

combination of parameters is pairwise, where each

column represents an input parameter that contains

only values from its domain, and each row represents

a test case. This combination structure is called

Covering Array (CA) as defined in the next

subsection.

2.2. Covering Array (CA)

A Covering array is a mathematical object

denoted by CA(N;t,k,v) that is N rows by k columns

(parameters) array. The key feature of a CA is that

for every N × t sub-array, all possible value

combination t-tuple sets appear at least once and they

considered as covered tuples. where N represents the

number of tests, k is the number of parameters, and

each parameter has v values, t is the interaction

strength

A Mixed Covering Array (MCA) denoted by

 is an extended version of

CA, the only difference with CA is that domains of

the parameters in MCA are non-unified since the

domains of the parameters in CA are unified. The

values in the i
th

column belong to the Vpi set. for

example according to MCA definitions the test suite

in Table 2 can be represented as MCA(12,2,8,2
6
3

1
4

1
).

3. THE PROPOSED METHOD

This section presents the details and

implementation of the proposed method and

highlights the improvements and modification to the

original mixed neighborhood tabu search. In the

upcoming subsections, first, the concept of tabu

search algorithm and its properties are explained

briefly. Then, it illustrates the steps of the test case

generation. Finally, the modifications for the

neighborhood functions are implemented.

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 5

ZANCO Journal of Pure and Applied Sciences 2019

3.1. Tabu Search

The Tabu Search (TS) algorithm originally

proposed by Glover (1986). The TS is a meta-

heuristic local search algorithm, the principle idea

of TS is the combination of memory to the search

algorithm called tabu list (Glover and Laguna,

1999). The tabu list has a queue data structure that

keeps a given number of the latest moves carried

out to change a current solution s to a new solution

s
’
. When a new solution is obtained, the TS

algorithm avoids the moves in the tabu list, then

the current move is queued to the tabu list and the

very old move is dequeued from the tabu list so

that the current move is banned as it lives in the

tabu list. However, sometimes the TS allows the

moves that live in the tabu list which can produce

better solutions than the current best, this is

another feature of the TS algorithm known as

aspiration criteria. Other two important features of

the TS algorithm are intensification and

diversification for search strategies, the details can

 be found here (Glover, 1998). The

intensification is a strategy that intensively

searches a region where the best solutions found

so far to find better solutions. Whereas, the

diversification strategy is exploring the unvisited

regions from the search space looking forward to a

new solution that may vary from those solutions

s e e n b e f o r e .

The pseudo-code of a very basic TS

algorithm is shown in Algorithm 1 that includes

the main components of the TS including: 1)

initialization s is subset of search space; 2) tabu

list queue T; 3) neighborhood function N(s,T) that

by which TS moves from current solution s to

another new solution s
’
; 4) the evaluation function

f(s); 5) the stop criteria f(sbest) > 0, in this case, is

minimization function. Note that the words move

and transformation are used interchangeably in the

following sections.

3.2. Test case generation algorithm

An overview of the proposed algorithm

can be summarized in Figure 3, at first the

algorithm receives the SUT model files, the

coverage strength t and initial size of the test

suite N, the SUT models files are parameters

model file which refers to P and Vp.

Then, the algorithm constructs the

search space S which is a two-level hash-

table data structure, the first level is the

parameters combinations and the second

level is the combination or cross-product of

their values in the form of t-tuple sets.

Next, the algorithm initializes the

partial MCA M matrix of size N from

Algorithm 2 see line 6 that calls the

initialization function that explained in

detail in section 3.2.1. Finally, the tabu

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
6

ZANCO Journal of Pure and Applied Sciences 2019

search will start to optimize the initial M for

I iterations and after each tabu search call

the algorithm checks for t-tuple coverage, if

all t-tuple are covered then the algorithm

will stop, otherwise the algorithm will add

new random row to M, the new row is

generated based on Hamming distance to

diversify the search see the line 13 and

section 3.3.3 for the details, this process is

repeated until it covers all the t-tuples in S

then the algorithm will stop and produces

the complete MCA, see lines 7-13. It is

worth to mention that the tabu search

algorithm uses two neighborhood function

to optimize the matrix M, the neighborhood

functions are selected based on a random

probability to explore the search space see

section 3.2for the internal steps of each

neighborhood function and how the

algorithm optimizes the initial M.

3.2.1. Initialization
Initialization function takes an initial

size of test suite N and initializes an empty

partial MCA M matrix, As the proposed

method uses one-test-at-a-time (OTAT) as

test generation strategy, the initialization

function generates test cases based on the

two modes random generation and

random t-tuple selection until the size of

the initialized MCA M reaches N rows.

Lastly, it passes the generated MCA M for

optimization. the following paragraphs

describe the two modes of initial generation

in detail.

In random generation mode, the very first

row of the matrix M is randomly generated

in a way that each value for the parameters

pi is randomly chosen from the Vpi set, after

that the new row is added to the matrix M.

Then from the second row, the initialization

function generates two new random rows

known as candidate rows using the same

way as for the first row, but the only

difference here is the two candidate rows

will not directly be added to the matrix M

instead the initialization function relies on

the hamming distance to choose one of the

candidate rows, as demonstrated in Table 3,

hamming distance can be computed using

Equation 1, which is the summation of a

number of different symbols between the

candidate row and all current rows in the

matrix M, so the initialization function

computes a hamming-distance for the

candidate rows, then a candidate row that

has maximum hamming-distance is inserted

to matrix M with the purpose of diversifying

the values in the newly added row from

current rows in the matrix, so that to cover

as much t-tuples as

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 7

ZANCO Journal of Pure and Applied Sciences 2019

possible to visit the unexplored regions in

the search space, the initialization function

repeats this process for a specific number of

iterations based on some heuristics such as

number of covered and uncovered t-tuples,

from the Algorithm 3 see the lines 7-13 that

refers to this random mode and the rest of

iterations will be generated based on the

second mode.

In random t-tuple selection mode, this

mode in initial solution generation is very

simple, first, it initializes a row of -1s, then

the selection mode replaces the current -1s

from the row with the selected uncovered t-

tuples from search space S, each time a t-

tuple is selected and it will be replaced with

t -1s in the new row until no -1 will remain

in it. This process is repeated until the size

of the matrix M reaches to N rows, see the

lines between 15-21.

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
8

ZANCO Journal of Pure and Applied Sciences 2019

3.2.2. The base neighborhood functions

The mixed neighborhood tabu search MiTS

is first proposed by Gonzalez-Hernandez

and Torres-Jimenez (2010). The original

algorithm uses three neighborhood functions

each one has a specific moving strategy as

follows: the first one N1 randomly changes

only a value of one cell of the matrix M at

each call; the second function N2 as shown

in Algorithm 4, changes the values of

randomly selected column for the entire

rows at each call that helps the algorithm to

move toward a better solution; the third

function N3, firstly it searches for uncovered

t-tuples from the search space and selects it,

then it replaces the selected t-tuple with the

corresponding t-tuple in the matrix M for the

entire rows.

The man goal of using such neighborhood

functions in tabu search algorithm is to

explore the search space that at each

function call, it moves from current best

solution to a better solution that navigates

the search space to find unexplored regions.

In general, N2 and N3 takes the partial MCA

M as input and tries to transform the rows in

M based on their strategy, after each

transformation the algorithm evaluates the

movement if the search goes toward better

solution it is accepted otherwise is rejected.

In this case, the evaluation function F(R) is a

minimization function. The evaluation is

based on the number of covered t-tuple the

tabu search continues this process until all t-

tuple are covered. The most effective

neighborhood functions for exploring the

search space and convergence to the final

solution are the second N2 and the third one

N3, but the main problem of them is that

they require to mutate the entire rows in the

matrix M at each call. However, based on

statistical analysis changing the all the rows

in matrix M at each call will not guarantee

that all the changed rows will produce a

better solution see line 7 in Algorithm 4, as

a result, this will lead to more time

consuming and slow convergence that

affects the performance of the algorithm.

To boost the convergence and reducing the

running time, naturally, we asked what if

randomly a specific number of rows in M

are selected to transform instead of the

changing entire rows sequentially as shown

in Algorithm 4. The analysis of the results

showed a notable boost in performance as

compared with the base algorithm. The next

subsection explains the modifications in

detail.

3.3. The Modification

In the proposed method RMiTS the tabu

search algorithm only uses the two effective

neighborhood function N2 and N3 that are

modified with random selection strategy, to

explore the search space and to move from

one state to another state, the tabu search

selects one of the neighborhood functions

based on the random probability during the

search. The next subsection explains the

modifications for each neighborhood

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 9

ZANCO Journal of Pure and Applied Sciences 2019

function in detail.

3.3.1. Improved second neighborhood function

N2
The N2 function in RMiTS receives the

partial MCA matrix M and the number of

rows Irows for modifications (movements).

Firstly, The N2 initializes random row index

r and random column index c then the

function starts with the r
th

row R and

changes the value of c
th

column R[c] in a

way that randomly chooses a value from Vpc

except for the current value. Later, the

movement R is evaluated if the fitness value

is less than or equal to the best global

solution, the movement R is accepted and it

will be a new global best solution Rgloabl best

otherwise the row index r is sequentially

incremented but the column index c is fixed.

Finally, the process is repeated for Irows

iterations see the Algorithm 5, sometimes

the function may converge to zero then it

will stop and returns the complete MCA M

see the lines (9 to 10).

It is necessary to highlight the modifications

here, The first improvement is that the

function to starts from a random row and

modifies Irows rows see the lines 2,5,6, and

13, instead of starting from the first row and

modifying all the rows as shown in

Algorithm 4, using this random selection

strategy boosted the performance of this

function.

The second contribution is that we

modified the locality property of the tabu

search that allows the search return to the

previous or explored regions which means it

accepts the moves that worse than Rbest

found from previous function calls see lines

1 and 7 in Algorithm 4, but we modified the

N2 that does not allow the search to return to

the worse moves which means a global

search and the evaluation function is based

globally found Rglobal best the total number of

uncovered t-tuples among every function

calls see the modification at lines 3,8 and 9

in Algorithm 5.

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
10

ZANCO Journal of Pure and Applied Sciences 2019

3.3.2. Improved third neighborhood function

N3
The third neighborhood function N2 in

RMiTS takes the partial MCA matrix M and

the number of rows Irows for movements,

Algorithm 6 shows the steps of this

function, first N2 selects a random index or

row r except for the indices currently in the

tabu list, then the function N2 starts with the

r
th

row and replaces the randomly selected

uncovered t-tuple from the search space S

with the corresponded t-tuple indices from R

see the line 7, later the new move R is

evaluated if the fitness value is less than or

equal to the local best solution the move R is

accepted and it will be a new local best

solution Rbest and the current row index r is

added to the tabu list and it will be a tabu for

this function call, for the next iteration a

new random row is selected and the process

is repeated for Irows iterations, the function

N2 may converge to zero then it will stop

and returns the complete MCA M.

The main modification done on this

function is based the random selection

(random sampling) strategy, the function N3

randomly select Irow rows in matrix M for

modifications see the lines 5, 6, 7 and 14 in

Algorithm 6, instead of modifying all the rows

sequentially. This improvement is very

effective to diversify the search process, as a

result, the tabu search converged faster than

the base algorithm.

4. EVALUATION OF RESULTS AND

DISCUSSION

This section is first, describes the

benchmarks used to evaluate the efficiency

of the proposed method. Second, specifies

the tools and approaches that the proposed

method is compared against. Then it shows

the settings of the experiments. Next, it

presents the evaluation of the experiment

results. Finally, it presents the effectiveness

of the generated test suites through an

imperial case study.

4.1. Benchmarks

In the experiments of evaluating the

proposed method, we use a specific number

of real-world system benchmarks some of

them are the exact benchmarks used by

Gonzalez-Hernandez (2015) for evaluating

the MiTS that found the best bounds so far

for unconstrained CIT problem. The most

popular benchmarks that are the model of

real-world systems including:

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 11

ZANCO Journal of Pure and Applied Sciences 2019

1. Bugzilla a bug-tracking system.

2. SPINV a verifier for SPIN model

checker.

3. SPINS a simulator for SPIN.

4. GNU Gzip which is a popular data

compression program in the GNU

project.

5. Android is an open-source mobile

phone operating system.

6. RFID is a radio-frequency

identification uses electromagnetic

fields to automatically identify and

track tags attached to objects.

7. Tesla, we modelled this benchmark

which is taken from autopilot settings

of Tesla electric car.

8. TCAS a traffic collision avoidance

system which is an aircraft collision

avoidance system designed to reduce

the incidence of mid-air collisions

between aircraft.

4.2. Experiment Settings

To perform a fair evaluation, the modified

MiTS algorithm and the original MiTS

algorithm are both implemented in C#

language and compiled with .NET Core

version 2.0. We conducted exhaustive

experiments for t-way testing, for most of

the benchmarks in the experiment we set

different values for the control parameters of

the tabu search including initial test suite

(MCA) size N and the number of rows Irows

for the neighborhood functions.

To evaluate the proposed method RMiTS

we conduct two set of experiments, in the

first set experiment the RMiTS is compared

the original MiTS to confirm the efficiency

(test suite size) and performance (running

time) improvements based on the proposed

modifications, the second set experiments

the RMiTS is compared to a state-of-the-art

t-way CIT generator called Advanced

Combinatorial Test Tool (ACTS) proposed

by Yu et al. (2013) that implemented in Java

language to prove the efficiency (test suite

size) of the RMiTS.

All the experiments are executed 20 times

for both RMiTS and MiTS but ACTS only

executed once as it is a deterministic

algorithm that produces the same result in

every run. The experiments are executed

under macOS environment on a machine

with 2.6 GHz Intel Core i7 process and with

16 GB memory.

It is important to note that, for all the

experiments, the iteration I of the tabu

search algorithm is fixed to 100 for both

MiTS and RMiTS. However, the best

bounds that found by MiTS as reported in

(Gonzalez-Hernandez, 2015), the iteration

of the tabu search was set to 1000, as

iteration increases the algorithm takes longer

running and smaller results. Some of the

results of the original MiTS that reported in

this paper may not compatible with those

reported in (Gonzalez-Hernandez, 2015)

because due to lack of similar running

environment as the original MiTS was

executed in a hybrid cluster with 256

processing nodes with 1056 CPU cores,

2112 GB of memory RAM, but the

experiments in this work as mentions above

are executed in a personal computer, which

this shows another strength of work as

achieved many similar results with much

more lower cost.

4.3. Results and discussion

This section presents the results of both sets

of experiments including the performance

and efficiency assessments and discusses the

outcomes to evaluate the modifications done

in the new algorithm. Table 4 shows the

results of the first set of experiments which

is an efficiency and performance

comparisons between original MiTS and the

improved RMiTS, the first column in the

table indicates the identification (ID) of the

benchmark average execution with a

specific strength for both tools MiTS and

RMiTS. The second column represents the

SUT model and configurations of the real-

word benchmarks, the third column is k

which is a number of input parameters for

each corresponding configuration. The

values in column 5 are the average of test

suite sizes N of 20 runs of the original MiTS

algorithm and column 6 contains the

average values of the running times (in

seconds) required by the MiTS algorithm to

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
12

ZANCO Journal of Pure and Applied Sciences 2019

generate the test suites sizes on column 5.

Similarly, the columns 7 and 8 are the

average of the test suite size N of 20 runs

and running time (in seconds) values of the

improved algorithm RMiTS. The last two

columns represent differences in the size

and time respectively between MiTS and

RMiTS. In general, the values in the table

that are in bold indicate the improvements

either in size or in time, the values with a

symbol (*) indicate the theoretical best

bound and can’t be optimized further which

is the optimal test suite size.

As mentioned before, this study aimed to

improve the performance (reducing running

time) of the original MiTS. So, according to

the results reported in Table 4, the modified

algorithm RMiTS outperforms MiTS in

performance for all the benchmarks with

different interaction strength t without

exception as all the values in column 8 in

bold, however when the strength t = 2 for

the benchmarks Mobile Phone, SPINS,

Android, RFID, gzip and Tesla the

differences of the average running times

between MiTS and RMiTS were very small

amount of time because for such interaction

strength the search space size is very small

if compared with the search spaces for

higher strengths, thus both algorithms were

very fast in generating test suites. As

interaction strength goes higher the

difference amount of time goes higher too as

shown in the last column, especially when

interaction strength t ≥ 4 the percentage of

performance improvements between 50% to

75% and the average performance

improvements for all the interaction

strengths is 52%.

Usually improving the performance of a

combinatorial problems costs the efficiency

degradation, but the test suites generated

with RMiTS as shown in the Table 4

confirm that the efficiency of RMiTS is

enhanced for 9 benchmark instances out of

34 as compared with the original MiTS with

better performance see the benchmark

instances 9, 15, 16, 20, 25, 27, 29 and 34,

the positive values in column 9 indicates the

difference of test suites sizes between MiTS

and RMiTS for the benchmark instances for

which the efficiency was enhanced and the

enhanced test suite sizes are in bold text in

column 7. Remember, RMiTS matched

MiTS for 12 benchmark instances that

generated the same results but with higher

performance especially for benchmark

instances 23,24 and 28. Also, both MiTS

and RMiTS generated the theoretical best

bound test suite sizes for 10 instances that

marked with (*) symbol. For the remaining

tests, the RMiTS showed poor efficiency as

compared with MiTS for 13 benchmark

instances but the differences in average test

suite sizes between the MiTS and RMiTS is

very small, as the differences of 8

benchmark instances out of the 13

benchmark instances are less than one see

the column 9 the negative values indicate

the poor results, however, the differences

are relatively small but don’t forget that the

RMiTS results have almost higher

performance.

The second set of experiments which is a

comparison of efficiency only between the

improved algorithm RMiTS and a state-of-

the-art greedy algorithm ACTS to evaluate

the improvements in the efficiency of the

modified algorithm. Table 4 shows the

comparison of the average test suite sizes

generated by RMiTS with test suite sizes

generated by the greedy algorithm ACTS for

the same benchmarks used in the first set of

experiments, the first column in the table

represents the benchmark instance

identification, the second column is SUT

model, the column 3 and 4 indicate the

number of inputs parameters and interaction

strength respectively, column 5 contains the

size N of test suite generated by one run of

ACTS tool, column 6 represents the average

of test suite sizes N generated by 20 runs of

the improved algorithm RMiTS, and the last

column is the differences in size between the

two competitors.

The observed results in Table 4 show that

the improved RMiTS algorithm generated

smaller test suites than ACTS for 23

benchmark instances out of 34 as in bold

text in column 6, surprisingly the differences

of test sizes between ACTS and RMiTS are

incredibly high for interaction strengths t ≥ 4

see the benchmarks instances 14, 15, 16, 19,

20, 25, 28, 29, 32, 33 and 34 in which the

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 13

ZANCO Journal of Pure and Applied Sciences 2019

RMiTS generated significantly smaller test

suites. ACST generated smaller test suites

only for benchmark instances 8 and 22, but

the difference in the size of benchmark

instance 22 is very small it is less than 0.5,

thus only the benchmark instance 8 can be

considerable. The RMiTS and ACTS

generated similar results for 9 benchmark

instances see the last column the value 0

indicates the similarity of test suite sizes

generated by both tools. It is important to be

noted, 8 instances of the 9 similar results

generated by both tools are the theoretically

best bounds that can’t be optimized further,

thus if we ignore these 8 similar instances,

we can say that the RMiTS efficient than

ACTS for the 88% of applied benchmark

instances.

7. CONCLUSION

In this paper, we present an improvement

for mixed neighborhood functions tabu

search which is a meta-heuristic search

algorithm, for generating t-way mixed

covering array (MCA), the main

contributions of this research are using

random selection strategy for the two

neighborhood functions N2 and N3 to explore

the search space more thoroughly and

rapidly.

For evaluating the proposed algorithm, in

the experiments, we used different real-

world systems with t-way testing to measure

the quality of generated test cases. The

results showed that RMiTS improved in

performance for all the interaction strengths

for about 52% as compared with original

MiTS. Where running time is reduced

without significant effects in the efficiency,

also the efficiency of RMiTS still

competitive and the test suites generated by

RMiTS are significantly higher-quality than

one state-of-the-art tool such as ACTS for

about 88% of the applied benchmark

instances. The result of both sets of

experiments showed that the improvements

in performance and efficiency are mainly

targeted the higher interaction strength t ≥ 4.

As a result, we can say that the aim of this

work is met.

As technology growth alongside many real-

world system growths too that includes

constraints among input configuration,

therefore CIT is shifting toward constraints.

The main future challenges for this research

are investigating the search space and time

optimizations with the presence of

constraints. It is worth to mention that our

approach is unable to generate the MCA for

benchmarks that have more than 100

parameters for interaction strengths

due to the full memory footprint, many

strategies that can be used to reduce the

memory occupation of the MCA data

structure, such as compression techniques or

using different strategy for storing the t-

tuples sets. However, this might affect the

running time but there is a possibility to

optimize the running time by implementing

our approach in a parallel computing

environment such as Compute Unified

Device Architecture (CUDA) (Ploskas et al.,

2016) which is C/C++ language based

framework runs on NVIDA Graphics

Processing Unit (GPU), or using GPU

programming with Matlab (Schmidt et al.,

2018).

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
14

ZANCO Journal of Pure and Applied Sciences 2019

Figure 1: GUI of Tesla electric car autopilot settings

Table 1: Input parameters and their values of Tesla electric car autopilot settings

Parameter Values

1 Autosteer off, on

2 Summon off, on

3 Lane Departure Warning (LDW) off, on

4 Automatic Emergency Breaking (AEB) off, on

5 Obstacle-Aware Acceleration (OAA) off, on

6 Speed Limit (SL) relative, absolute

7 Speed Limit Warning (SLW) off, display, chime

8 Forward Collision Warning (FCW) off, late, medium, early

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 15

ZANCO Journal of Pure and Applied Sciences 2019

Figure 2: Modeling a 2-way CIT

Table 2: 2-way test suite of Tesla electric car autopilot settings

Autosteer Summon LDW AEB OAA SL SLW FCW

1 on on off off on absolute chime Medium

2 off off on on on absolute display Late

3 on on on on on absolute off Off

4 on on off off off relative chime Late

5 off off on on on absolute chime Early

6 off on off on off relative display Early

7 off off on off off relative off Medium

8 off off off on off relative chime Off

9 off off on on off relative display Medium

10 on off off off off absolute off Early

11 on on on off on relative display Off

12 on on off off off relative off Late

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
16

ZANCO Journal of Pure and Applied Sciences 2019

Figure 3: An overview block diagram of the proposed method

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 17

ZANCO Journal of Pure and Applied Sciences 2019

Table 4: Efficiency(size) and performance(time in seconds) comparison between original MiTS and modified RMiTS,

k refres to a number of paarameters in the benchmarks and t is an interaciton strength.

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
18

ZANCO Journal of Pure and Applied Sciences 2019

Table 5: Efficiency(size) comparison between RMiTS and state-of-the-art tool ACTS, k refers to a number of

parameters in the benchmarks and t is an interaction strength

Hasan. I. and. Potrus.M /ZJPAS: 2020, 32 (5): 1-19
 19

ZANCO Journal of Pure and Applied Sciences 2019

References

AHMED, B. S. 2016. Test case minimization approach

using fault detection and combinatorial

optimization techniques for configuration-aware

structural testing. Engineering Science and

Technology, an International Journal, 19, 737-753.

AHMED, B. S., GAMBARDELLA, L. M., AFZAL, W. &

ZAMLI, K. Z. 2017. Handling constraints in

combinatorial interaction testing in the presence of

multi objective particle swarm and multithreading.

Information and Software Technology, 86, 20-36.

AHMED, B. S. & ZAMLI, K. Z. 2011. A variable strength

interaction test suites generation strategy using

Particle Swarm Optimization. Journal of Systems

and Software, 84, 2171-2185.

AHMED, B. S., ZAMLI, K. Z. & LIM, C. P. 2012.

Constructing a t-way interaction test suite using the

particle swarm optimization approach.

International Journal of Innovative Computing,

Information and Control, 8, 431-452.

AVILA-GEORGE, H., TORRES-JIMENEZ, J.,

HERNÁNDEZ, V. & GONZALEZ-

HERNANDEZ, L. 2012. Simulated Annealing for

Constructing Mixed Covering Arrays. Springer,

Berlin, Heidelberg.

BRYCE, R. C., COLBOURN, C. J. & COHEN, M. B. A

framework of greedy methods for constructing

interaction test suites. 2005 New York, New York,

USA. ACM Press, 146-146.

COHEN, D. M., DALAL, S. R., FREDMAN, M. L. &

PATTON, G. C. 1997. The AETG system: an

approach to testing based on combinatorial design.

IEEE Transactions on Software Engineering, 23,

437-444.

COHEN, M. B., COLBOURN, C. J. & LING, A. C. H.

Augmenting simulated annealing to build

interaction test suites. 2003 2003a. IEEE, 394-405.

COHEN, M. B., DWYER, M. B. & SHI, J. Interaction

testing of highly-configurable systems in the

presence of constraints. 2007 2007 New York, New

York, USA. ACM Press, 129-129.

COHEN, M. B., GIBBONS, P. B., MUGRIDGE, W. B. &

COLBOURN, C. J. Constructing test suites for

interaction testing. 2003 2003b. IEEE, 38-48.

COHEN, M. B., GIBBONS, P. B., MUGRIDGE, W. B.,

COLBOURN, C. J. & COLLOFELLO, J. S. A

variable strength interaction testing of components.

2003 2003c. IEEE Comput. Soc, 413-418.

GHAZI, S. A. & AHMED, M. A. Pair-wise test coverage

using genetic algorithms. 2003. IEEE, 1420-1424.

GLOVER, F. 1986. Future paths for integer programming

and links to artificial intelligence. Computers and

Operations Research, 13, 533-549.

GLOVER, F. 1998. Tabu Search: A Tutorial. Interfaces, 20,

74-94.

GLOVER, F. & LAGUNA, M. 1999. TABU search, Kluwer

Academic Publishers.

GONZALEZ-HERNANDEZ, L. 2015. New bounds for

mixed covering arrays in t-way testing with

uniform strength. Information and Software

Technology, 59, 17-32.

GONZALEZ-HERNANDEZ, L. & TORRES-JIMENEZ, J.

2010. MiTS: A new approach of tabu search for

constructing mixed covering arrays. 2010.

Springer, Berlin, Heidelberg, 382-393.

KALAEE, A. & RAFE, V. 2016. An Optimal Solution for

Test Case Generation Using ROBDD Graph and

PSO Algorithm. Quality and Reliability

Engineering International, 32, 2263-2279.

KUHN, D. R., KACKER, R. N. & LEI, Y. 2013.

Introduction to combinatorial testing, CRC Press.

LEI, Y., KACKER, R., KUHN, D. R., OKUN, V. &

LAWRENCE, J. 2007. IPOG: A general strategy

for T-way software testing. 2007/03//. IEEE, 549-

556.

LEI, Y. & TAI, K. C. 1998. In-parameter-order: A test

generation strategy for pairwise testing. 1998/11//.

IEEE Comput. Soc, 254-261.

LIN, J., LUO, C., CAI, S., SU, K., HAO, D. & ZHANG, L.

TCA: An efficient two-mode meta-heuristic

algorithm for combinatorial test generation.

2016/11// 2016. IEEE, 494-505.

MCCAFFREY, J. D. Generation of Pairwise Test Sets

Using a Genetic Algorithm. 2009. IEEE, 626-631.

NIE, C. & LEUNG, H. 2011. A survey of combinatorial

testing. ACM Computing Surveys, 43, 1-29.

PLOSKAS, N., SAMARAS, N., PLOSKAS, N. &

SAMARAS, N. 2016. Introduction to GPU

programming in MATLAB. GPU Programming in

MATLAB, 71-107.

POTRUS, Y. M. 2016. Maintenance Scheduling

Optimization for Electrical Grid Using Binary Gray

Wolf Optimization Technique. ZANCO Journal of

Pure and Applied Sciences, 28.

SCHMIDT, B., GONZÁLEZ-DOMÍNGUEZ, J., HUNDT,

C., SCHLARB, M., SCHMIDT, B., GONZÁLEZ-

DOMÍNGUEZ, J., HUNDT, C. & SCHLARB, M.

2018. Compute Unified Device Architecture.

Parallel Programming, 225-285.

YU, L., LEI, Y., KACKER, R. N. & KUHN, D. R. ACTS:

A combinatorial test generation tool. 2013/03//.

IEEE, 370-375.

