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A B S T R A C T: 
 

       Combinatorial interaction testing (CIT) is a technique used to find minimal test suite among configuration options of a System 

Under Test (SUT) that uses a Covering Array (CA) as a combinatorial structure. CIT is very effective for reducing the costs of the 

testing process that uses a sampling technique instead of exhaustive testing. This paper proposes the modification of Mixed 

Neighborhood Tabu Search (RMiTS) algorithm using the random selection strategy. The base MiTS algorithm is originally used 

for generating t-way Mixed Covering Array (MCA). The modification improves the algorithm performance (running time) to 

cover all possible input configuration combinations to produce the optimal or near-optimal test suites. The modified algorithm is 

evaluated through a comparison against the base MiTS algorithm to confirm the performance improvements. Also, it is compared 

to a state-of-the-art algorithm known as Advanced Combinatorial Test Tool (ACTS) to confirm its efficiency. The experimental 

results confirm the effectiveness of the modifications that improved the performance for all applied benchmarks, and also it shows 

that RMiTS is more efficient than ACTS. 
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1. INTRODUCTION 

 

Software Testing is a very important 

stage in the process of Software 

Development Life Cycle (SDLC). A high-

quality software needs an exhaustive testing 

process and large test suites to detect most 

of the bugs in the developed software. 

However, exhaustive testing may require 

higher cost budget and longer development 

time (Ahmed, 2016).  

 

 

 

 

 

 

 

 

Instead of exhaustive testing, a sampling 

technique is used to minimize the size of the test 

suites. This means, generating a high-quality test 

suite is a game-changer, that reduces the testing 

time and development costs without affecting the 

quality of the software. Eventually, it can detect 

most of the bugs in less effort. Recently, the 

demand for high customizable software systems 

has increased. These type of systems reuses the 

ready components from a set that belongs to one 

core to produce newly developed software. Thus, 

the highly-configurable systems are becoming the 

direction and the future of software development. 

Significant reusability of highly-configurable 

systems notably reduced the development cost 

(Lin et al., 2016). The highly-configurable 

systems comprise many ready components that 
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can interact with each other. Each component has 

many input configurations options. Evidence 

revealed that software bugs occur during the small 

number of the interaction of these input 

configuration options (Kuhn et al., 2013). As 

mentioned by Cohen et al. (2007), the high-

configurable systems made the software testing a 

threat to the quality of software than before, which 

forces the software tester to exhaustively test the 

combination of all input options. Therefore, this 

leads to more time consuming on the testing 

process that increases the development costs too. 

Testing all the combinations of parameter values 

is not always feasible. Instead, a sampling 

technique is used to detect faults from parameter 

combinations. This technique called 

Combinatorial Interaction Testing (CIT) (Cohen et 

al., 1997, Cohen et al., 2007). It reduces the size 

of the exhaustive test suite dramatically, in such a 

way, that cover all possible value combinations at 

least once. 

The CIT techniques are considered as an 

NP-hard problem (Nie and Leung, 2011). Thus, 

many approaches have been proposed in the 

literature to solve this problem. Most two popular 

approaches are meta-heuristic and greedy, the 

approaches are either constrained or 

unconstrained, the systematic literature studies 

including Nie and Leung (2011) that summarizes 

an overview of CIT approaches and applications. 

The book by Kuhn et al. (2013) covers a practical 

aspect and definitions of CIT. 

The above-mentioned studies categories 

the CIT approaches based on generation strategies 

into greedy algorithms, meta-heuristic algorithms 

and mathematical methods. The upcoming 

paragraph highlights the most relevant works of 

t h e  f i r s t  t w o  p o p u l a r  c a t e g o r i e s . 

First, greedy algorithms are widely used 

algorithms for solving CIT problems. Basically, 

there are two generation strategies in greedy 

algorithm one-parameter-at-a-time (OPTAT) and 

one-test-at-a-time (OTAT). An example of 

OPTAT is in-parameter-order IPO algorithm that 

starts by generating CA with only t parameters, 

then the algorithm extends the CA by adding one 

parameter at each iteration, there are two types of 

CA extension of horizontally and vertically 

consequently, this process is repeated until all t-

tuples are covered. The IPO algorithm originally 

proposed by Lei and Tai (1998) for generating 2-

way CA, but it was generalized for t-way CA 

generator as in-parameter-order-general (IPOG) 

b y  L e i  e t  a l .  ( 2 0 0 7 ) . 

A Combinatorial Test Generation Tool 

(ACTS) is a tool that presented by Yu et al. (2013) 

that composed of IPOG, IPOG-D, IPOG-F, and 

IPOG-F2 algorithms; this tool can handle large 

SUT models including large constraint sets with 

high interaction strength          that known 

as  the s tate -of- the-art  greedy algori thm. 

Another OTAT greedy strategy that 

constructs CA by generating one test at each 

iteration until all t-tuple are covered, the purpose 

of using such a strategy is to cover more t-tuples at 

each iteration. A popular tool of this strategy is 

Automatic Efficient Test Generator (AETG) that 

firstly proposed by Cohen et al. (1997) which was 

the first greedy algorithm that adopted OTAT 

strategy and a general framework of OTAT 

algorithm initiated by Bryce et al. (2005). Also, 

the proposed method uses a greedy OTAT strategy 

in the initial solution and test case generation as 

d e s c r i b e d  s e c t i o n  i n  3 . 2 . 1 . 

Second, the meta-heuristic algorithms 

which use random guess and evolving solutions 

with each cycle to reach a solution or best solution 

(Potrus, 2016), such as Genetic Algorithm (GA) 

(Ghazi and Ahmed, McCaffrey), Simulating 

Annealing (SA) (Cohen et al., 2003b, Cohen et 

al., 2003a, Cohen et al., 2003c), Tabu Search (TS) 

(Gonzalez-Hernandez and Torres-Jimenez) and 

Particle Swarm Optimization (PSO) (Ahmed and 

Zamli, 2011, Ahmed et al., 2012, Kalaee and 

Rafe, 2016, Ahmed et al., 2017), that have a 

similar strategy for generating CA, usually starts 

by constructing a partial or incomplete CA then 

applies modifications or transformations to it, until 

it covers all the t-tuples. At each iteration, the 

algorithm moves toward an unexplored region so 

that it tries to cover all possible missed t-tuples as 

m u c h  a s  p o s s i b l e . 

Cohen et al. (2003b) used the meta-

heuristic Simulating Annealing (SA) algorithm to 

construct covering arrays for           . The 

SA algorithm first generates an initial solution 

randomly as an N by k  matrix.  Then the 

temperature reduced by a constant value close to 

one, the cost of the evaluation function is the 

number of uncovered t-tuples. Within that year, 

Cohen et al. (2003a) integrated an algebraic 

construction technique to SA, this approach called 

A u g m e n t e d  S i m u l a t e d  A n n e a l i n g . 
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Gonzalez-Hernandez and Torres-Jimenez 

(2010) used a tabu search algorithm for generating 

MCA and their contribution was using the mixture of 

three neighborhood functions called MiTS, that 

selects the functions based on a random probability. 

However this work is improved later in (Gonzalez-

Hernandez, 2015), they changed a way of using 

MiTS to generate smaller MCAs than the best found 

so far, for interaction strength            . The 

improvements included a parameter tuning based on 

statistical tests identified the values that significantly 

affect the performance of MiTS. To verify the 

efficiency of the proposed improvements, the results 

of MiTS was compared and analyzed statistically 

against popular approaches included the best bound 

MCAs for interaction strength t   {2 − 6} that have 

been reported to date in the literature for SA and 

IPOG algorithms, and others. The improved MiTS 

showed that there were notable differences between 

the obtained solutions and the best previously 

reported bounds. 

Besides, Avila-George et al. (2012) used the 

mixed neighborhood functions with SA to construct 

MCA with          The MCA generation process 

begins with an initial solution that uses the maximum 

Hamming-distance among many candidate test cases, 

in the algorithm uses two neighborhood functions to 

optimize the MCA matrix. 

Ahmed et al. (2012) proposed a Particle 

Swarm Test Generator (PSTG) to construct a 

covering array for            . PSTG randomly 

generates test cases and chooses the one that has a 

maximum interaction coverage that utilizing the PSO 

with a greedy strategy for identifying the test cases. 

The main problem of the PSO based algorithms is 

related to PSO that needs many parameter tunings. 

However, the improved MiTS in (Gonzalez-

Hernandez, 2015) reported the best bounds 

(minimum possible test suite sizes). But it still suffers 

from low performance (long running time). Thus, in 

this work, we modified the MiTS using random 

selection strategy into random MiTS (RMiTS), the 

major modifications targeted the neighborhood 

functions N2 and N3 to improve the performance 

(reducing running time) of the neighborhood 

functions with random selection techniques instead 

of normal sequential selection. However, one of the 

downsides of the tabu search algorithm is suffering 

from local minima (Ahmed et al., 2012). To 

overcome this problem, one of the neighborhood 

functions is optimized in which the behavior of the 

evaluation function is modified from local best 

evaluation into a global best evaluation, that helped 

the tabu search to diversify the search. 

The reminder sections of this paper are 

structured as follows: Section 2 starts with an 

example to introduce the combinatorial interaction 

testing and shows the mathematical notion of CA. 

Section 3 presents the proposed modifications of the 

base MiTS algorithm. Section 4 shows the design of 

experiments and discusses the efficiency and 

performance evaluation of the proposed method. The 

final section concludes this paper. 

 

2. MATERIALS AND METHODS 

This section presents an overview of the 

theoretical backgrounds on CIT and how to model 

the system under test. Alongside that, it explains the 

general concepts and mathematical notation of 

combinatorial data structures. 

2.1. Combinatorial Interaction Testing 

To illustrate the concept of CIT assume there 

is a System Under Test (SUT) that has a set of k 

input parameters or configurations such that    
               and each parameter has a set of n 

values or options such that                
equivalents to the domain of   . For this purpose, let 

us consider Figure 1 as a SUT which is a user 

interface of Tesla car autopilot settings. 

For example, Table 1 shows a model of the 

SUT, that takes eight configuration parameters, the 

first five parameters have two values or options, the 

seventh parameter has three options, and the last 

parameter has four options. If all the parameter 

options of the current SUT are exhaustively tested 

together it will produce                    test 

cases, imagine if the only parameter with four 

options is added to the SUT, the number of test cases 

will increase to      1      the test suite size 

will growth exponentially, which is impossible to 

apply due to time and budget constraints. Though, a 

sampling technique such as CIT should be applied to 

overcome this problem. 

CIT is a combination of parameter values, 

with a specific interaction strength usually denoted as 

t and the value of         . CIT sampling 

techniques will reduce the number of test cases 

dramatically for example in the current SUT instead 

of applying all 768 test cases to cover all possible 

value combinations it needs only 12 test cases to 
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cover all possible t-tuple value combinations at least 

once as shown in Table 2. To understand the 

interaction strength t, let’s consider given SUT that 

receives three parameters each with two values, such 

that               , and X be a function that takes t 

parameter combinations, then computes the cartesian 

product of their possible values that produces t-tuple 

sets, for example when t = 2 it means the 2 − way 

combination of parameters which is pairwise 

combination such that X(P1,P2), X(P1,P3), X(P2,P3) as 

demonstrated in Figure 2. 

Table 2 shows a test suite that equivalents to 

2−way CIT of the SUT in Figure 1 which means the 

combination of parameters is pairwise, where each 

column represents an input parameter that contains 

only values from its domain, and each row represents 

a test case. This combination structure is called 

Covering Array (CA) as defined in the next 

subsection.  

2.2. Covering Array (CA) 

A Covering array is a mathematical object 

denoted by CA(N;t,k,v) that is N rows by k columns 

(parameters) array. The key feature of a CA is that 

for every N × t sub-array, all possible value 

combination t-tuple sets appear at least once and they 

considered as covered tuples. where N represents the 

number of tests, k is the number of parameters, and 

each parameter has v values, t is the interaction 

strength 

A Mixed Covering Array (MCA) denoted by 

                     is an extended version of 

CA, the only difference with CA is that domains of 

the parameters in MCA are non-unified since the 

domains of the parameters in CA are unified. The 

values in the i
th 

column belong to the Vpi set. for 

example according to MCA definitions the test suite 

in Table 2 can be represented as MCA(12,2,8,2
6
3

1
4

1
). 

3. THE PROPOSED METHOD 

This section presents the details and 

implementation of the proposed method and 

highlights the improvements and modification to the 

original mixed neighborhood tabu search. In the 

upcoming subsections, first, the concept of tabu 

search algorithm and its properties are explained 

briefly. Then, it illustrates the steps of the test case 

generation. Finally, the modifications for the 

neighborhood functions are implemented.
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3.1.  Tabu Search 

The Tabu Search (TS) algorithm originally 

proposed by Glover (1986). The TS is a meta-

heuristic local search algorithm, the principle idea 

of TS is the combination of memory to the search 

algorithm called tabu list (Glover and Laguna, 

1999). The tabu list has a queue data structure that 

keeps a given number of the latest moves carried 

out to change a current solution s to a new solution 

s
’
. When a new solution is obtained, the TS 

algorithm avoids the moves in the tabu list, then 

the current move is queued to the tabu list and the 

very old move is dequeued from the tabu list so 

that the current move is banned as it lives in the 

tabu list. However, sometimes the TS allows the 

moves that live in the tabu list which can produce 

better solutions than the current best, this is 

another feature of the TS algorithm known as 

aspiration criteria. Other two important features of 

the TS algorithm are intensification and 

diversification for search strategies, the details can 

 be found here (Glover, 1998). The 

intensification is a strategy that intensively 

searches a region where the best solutions found 

so far to find better solutions. Whereas, the 

diversification strategy is exploring the unvisited 

regions from the search space looking forward to a 

new solution that may vary from those solutions 

s e e n  b e f o r e              . 

 

The pseudo-code of a very basic TS 

algorithm is shown in Algorithm 1 that includes 

the main components of the TS including: 1) 

initialization s is subset of search space; 2) tabu 

list queue T; 3) neighborhood function N(s,T) that 

by which TS moves from current solution s to 

another new solution s
’
; 4) the evaluation function 

f(s); 5) the stop criteria f(sbest) > 0, in this case, is 

minimization function. Note that the words move 

and transformation are used interchangeably in the 

following sections.  
 

 

 

 

3.2. Test case generation algorithm 

An overview of the proposed algorithm 

can be summarized in Figure 3, at first the 

algorithm receives the SUT model files, the 

coverage strength t and initial size of the test 

suite N, the SUT models files are parameters 

model file which refers to P and Vp. 

Then, the algorithm constructs the 

search space S which is a two-level hash- 

 

 

table data structure, the first level is the 

parameters combinations and the second 

level is the combination or cross-product of 

their values in the form of t-tuple sets. 

Next, the algorithm initializes the 

partial MCA M matrix of size N from 

Algorithm 2 see line 6 that calls the 

initialization function that explained in 

detail in section 3.2.1. Finally, the tabu 
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search will start to optimize the initial M for 

I iterations and after each tabu search call 

the algorithm checks for t-tuple coverage, if 

all t-tuple are covered then the algorithm 

will stop, otherwise the algorithm will add 

new random row to M, the new row is 

generated based on Hamming distance to 

diversify the search see the line 13 and 

section 3.3.3 for the details, this process is 

repeated until it covers all the t-tuples in S 

then the algorithm will stop and produces 

the complete MCA, see lines 7-13. It is 

worth to mention that the tabu search 

algorithm uses two neighborhood function 

to optimize the matrix M, the neighborhood 

functions are selected based on a random 

probability to explore the search space see 

section 3.2for the internal steps of each 

neighborhood function and how the 

algorithm optimizes the initial M. 

3.2.1. Initialization 
Initialization function takes an initial 

size of test suite N and initializes an empty 

partial MCA M matrix, As the proposed 

method uses one-test-at-a-time (OTAT) as 

test generation strategy, the initialization 

function generates test cases based on the 

two modes random generation and 

random t-tuple selection until the size of 

the initialized MCA M reaches N rows. 

Lastly, it passes the generated MCA M for 

optimization. the following paragraphs 

describe the two modes of initial generation 

in detail.

 

 

 
 

In random generation mode, the very first 

row of the matrix M is randomly generated 

in a way that each value for the parameters 

pi is randomly chosen from the Vpi set, after 

that the new row is added to the matrix M. 

Then from the second row, the initialization 

function generates two new random rows 

known as candidate rows using the same 

way as for the first row, but the only 

difference here is the two candidate rows 

will not directly be added to the matrix M 

instead the initialization function relies on 

the hamming distance to choose one of the  

 

candidate rows, as demonstrated in Table 3, 

hamming distance can be computed using 

Equation 1, which is the summation of a 

number of different symbols between the 

candidate row and all current rows in the 

matrix M, so the initialization function 

computes a hamming-distance for the 

candidate rows, then a candidate row that 

has maximum hamming-distance is inserted 

to matrix M with the purpose of diversifying 

the values in the newly added row from 

current rows in the matrix, so that to cover 

as much t-tuples as 
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possible to visit the unexplored regions in 

the search space, the initialization function 

repeats this process for a specific number of 

iterations based on some heuristics such as 

number of covered and uncovered t-tuples, 

from the Algorithm 3 see the lines 7-13 that 

refers to this random mode and the rest of 

iterations will be generated based on the 

second mode. 

 

 

 

In random t-tuple selection mode, this 

mode in initial solution generation is very 

simple, first, it initializes a row of -1s, then 

the selection mode replaces the current -1s 

from the row with the selected uncovered t-

tuples from search space S, each time a t-

tuple is selected and it will be replaced with 

t -1s in the new row until no -1 will remain 

in it. This process is repeated until the size 

of the matrix M reaches to N rows, see the 

lines between 15-21. 
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3.2.2. The base neighborhood functions 

The mixed neighborhood tabu search MiTS 

is first proposed by Gonzalez-Hernandez 

and Torres-Jimenez (2010). The original 

algorithm uses three neighborhood functions 

each one has a specific moving strategy as 

follows: the first one N1 randomly changes 

only a value of one cell of the matrix M at 

each call; the second function N2 as shown 

in Algorithm 4, changes the values of 

randomly selected column for the entire 

rows at each call that helps the algorithm to 

move toward a better solution; the third 

function N3, firstly it searches for uncovered 

t-tuples from the search space and selects it, 

then it replaces the selected t-tuple with the 

corresponding t-tuple in the matrix M for the 

entire rows. 

The man goal of using such neighborhood 

functions in tabu search algorithm is to 

explore the search space that at each 

function call, it moves from current best 

solution to a better solution that navigates 

the search space to find unexplored regions. 

In general, N2 and N3 takes the partial MCA 

M as input and tries to transform the rows in 

M based on their strategy, after each 

transformation the algorithm evaluates the 

movement if the search goes toward better 

solution it is accepted otherwise is rejected. 

In this case, the evaluation function F(R) is a 

minimization function. The evaluation is 

based on the number of covered t-tuple the 

tabu search continues this process until all t-

tuple are covered. The most effective 

neighborhood functions for exploring the 

search space and convergence to the final 

solution are the second N2 and the third one 

N3, but the main problem of them is that 

they require to mutate the entire rows in the 

matrix M at each call. However, based on 

statistical analysis changing the all the rows 

in matrix M at each call will not guarantee 

that all the changed rows will produce a 

better solution see line 7 in Algorithm 4, as 

a result, this will lead to more time 

consuming and slow convergence that 

affects the performance of the algorithm. 

To boost the convergence and reducing the 

running time, naturally, we asked what if 

randomly a specific number of rows in M 

are selected to transform instead of the 

changing entire rows sequentially as shown 

in Algorithm 4. The analysis of the results 

showed a notable boost in performance as 

compared with the base algorithm. The next 

subsection explains the modifications in 

detail. 

3.3. The Modification 

In the proposed method RMiTS the tabu 

search algorithm only uses the two effective 

neighborhood function N2 and N3 that are 

modified with random selection strategy, to 

explore the search space and to move from 

one state to another state, the tabu search 

selects one of the neighborhood functions 

based on the random probability during the 

search. The next subsection explains the 

modifications for each neighborhood  
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function in detail.  

 

3.3.1. Improved second neighborhood function 

N2 
The N2 function in RMiTS receives the 

partial MCA matrix M and the number of 

rows Irows for modifications (movements). 

Firstly, The N2 initializes random row index 

r and random column index c then the 

function starts with the r
th 

row R and 

changes the value of c
th 

column R[c] in a 

way that randomly chooses a value from Vpc 

except for the current value. Later, the 

movement R is evaluated if the fitness value 

is less than or equal to the best global 

solution, the movement R is accepted and it 

will be a new global best solution Rgloabl best 

otherwise the row index r is sequentially 

incremented but the column index c is fixed. 

Finally, the process is repeated for Irows 

iterations see the Algorithm 5, sometimes 

the function may converge to zero then it 

will stop and returns the complete MCA M 

see the lines (9 to 10). 

It is necessary to highlight the modifications 

here, The first improvement is that the 

function to starts from a random row and 

modifies Irows rows see the lines 2,5,6, and 

13, instead of starting from the first row and 

modifying all the rows as shown in 

Algorithm 4, using this random selection 

strategy boosted the performance of this 

function.  

The second contribution is that we 

modified the locality property of the tabu 

search that allows the search return to the 

previous or explored regions which means it 

accepts the moves that worse than Rbest 

found from previous function calls see lines 

1 and 7 in Algorithm 4, but we modified the 

N2 that does not allow the search to return to 

the worse moves which means a global 

search and the evaluation function is based 

globally found Rglobal best the total number of 

uncovered t-tuples among every function 

calls see the modification at lines 3,8 and 9 

in Algorithm 5. 
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3.3.2. Improved third neighborhood function 

N3 
The third neighborhood function N2 in 

RMiTS takes the partial MCA matrix M and 

the number of rows Irows for movements, 

Algorithm 6 shows the steps of this 

function, first N2 selects a random index or 

row r except for the indices currently in the 

tabu list, then the function N2 starts with the 

r
th 

row and replaces the randomly selected 

uncovered t-tuple from the search space S 

with the corresponded t-tuple indices from R 

see the line 7, later the new move R is 

evaluated if the fitness value is less than or 

equal to the local best solution the move R is 

accepted and it will be a new local best 

solution Rbest and the current row index r is 

added to the tabu list and it will be a tabu for 

this function call, for the next iteration a 

new random row is selected and the process 

is repeated for Irows iterations, the function 

N2 may converge to zero then it will stop 

and returns the complete MCA M. 

The main modification done on this 

function is based the random selection 

(random sampling) strategy, the function N3 

randomly select Irow rows in matrix M for 

modifications see the lines 5, 6, 7 and 14 in 

Algorithm 6, instead of modifying all the rows 

sequentially. This improvement is very 

effective to diversify the search process, as a 

result, the tabu search converged faster than 

the base algorithm. 

4. EVALUATION OF RESULTS AND 

DISCUSSION 

This section is first, describes the 

benchmarks used to evaluate the efficiency 

of the proposed method. Second, specifies 

the tools and approaches that the proposed 

method is compared against. Then it shows 

the settings of the experiments. Next, it 

presents the evaluation of the experiment 

results. Finally, it presents the effectiveness 

of the generated test suites through an 

imperial case study. 

4.1. Benchmarks 

In the experiments of evaluating the 

proposed method, we use a specific number 

of real-world system benchmarks some of 

them are the exact benchmarks used by 

Gonzalez-Hernandez (2015) for evaluating 

the MiTS that found the best bounds so far 

for unconstrained CIT problem. The most 

popular benchmarks that are the model of 

real-world systems including: 
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1. Bugzilla a bug-tracking system. 

2. SPINV a verifier for SPIN model 

checker. 

3. SPINS a simulator for SPIN. 

4. GNU Gzip which is a popular data 

compression program in the GNU 

project. 

5. Android is an open-source mobile 

phone operating system. 

6. RFID is a radio-frequency 

identification uses electromagnetic 

fields to automatically identify and 

track tags attached to objects. 

7. Tesla, we modelled this benchmark 

which is taken from autopilot settings 

of Tesla electric car. 

8. TCAS a traffic collision avoidance 

system which is an aircraft collision 

avoidance system designed to reduce 

the incidence of mid-air collisions 

between aircraft. 

4.2. Experiment Settings 

To perform a fair evaluation, the modified 

MiTS algorithm and the original MiTS 

algorithm are both implemented in C# 

language and compiled with .NET Core 

version 2.0. We conducted exhaustive 

experiments for t-way testing, for most of 

the benchmarks in the experiment we set 

different values for the control parameters of 

the tabu search including initial test suite 

(MCA) size N and the number of rows Irows 

for the neighborhood functions. 

To evaluate the proposed method RMiTS 

we conduct two set of experiments, in the 

first set experiment the RMiTS is compared 

the original MiTS to confirm the efficiency 

(test suite size) and performance (running 

time) improvements based on the proposed 

modifications, the second set experiments 

the RMiTS is compared to a state-of-the-art 

t-way CIT generator called Advanced 

Combinatorial Test Tool (ACTS) proposed 

by Yu et al. (2013) that implemented in Java 

language to prove the efficiency (test suite 

size) of the RMiTS. 

All the experiments are executed 20 times 

for both RMiTS and MiTS but ACTS only 

executed once as it is a deterministic 

algorithm that produces the same result in 

every run. The experiments are executed 

under macOS environment on a machine 

with 2.6 GHz Intel Core i7 process and with 

16 GB memory. 

It is important to note that, for all the 

experiments, the iteration I of the tabu 

search algorithm is fixed to 100 for both 

MiTS and RMiTS. However, the best 

bounds that found by MiTS as reported in 

(Gonzalez-Hernandez, 2015), the iteration 

of the tabu search was set to 1000, as 

iteration increases the algorithm takes longer 

running and smaller results. Some of the 

results of the original MiTS that reported in 

this paper may not compatible with those 

reported in (Gonzalez-Hernandez, 2015) 

because due to lack of similar running 

environment as the original MiTS was 

executed in a hybrid cluster with 256 

processing nodes with 1056 CPU cores, 

2112 GB of memory RAM, but the 

experiments in this work as mentions above 

are executed in a personal computer, which 

this shows another strength of work as 

achieved many similar results with much 

more lower cost. 

4.3. Results and discussion 

This section presents the results of both sets 

of experiments including the performance 

and efficiency assessments and discusses the 

outcomes to evaluate the modifications done 

in the new algorithm. Table 4 shows the 

results of the first set of experiments which 

is an efficiency and performance 

comparisons between original MiTS and the 

improved RMiTS, the first column in the 

table indicates the identification (ID) of the 

benchmark average execution with a 

specific strength for both tools MiTS and 

RMiTS. The second column represents the 

SUT model and configurations of the real-

word benchmarks, the third column is k 

which is a number of input parameters for 

each corresponding configuration. The 

values in column 5 are the average of test 

suite sizes N of 20 runs of the original MiTS 

algorithm and column 6 contains the 

average values of the running times (in 

seconds) required by the MiTS algorithm to 
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generate the test suites sizes on column 5. 

Similarly, the columns 7 and 8 are the 

average of the test suite size N of 20 runs 

and running time (in seconds) values of the 

improved algorithm RMiTS. The last two 

columns represent differences in the size 

and time respectively between MiTS and 

RMiTS. In general, the values in the table 

that are in bold indicate the improvements 

either in size or in time, the values with a 

symbol (*) indicate the theoretical best 

bound and can’t be optimized further which 

is the optimal test suite size. 

As mentioned before, this study aimed to 

improve the performance (reducing running 

time) of the original MiTS. So, according to 

the results reported in Table 4, the modified 

algorithm RMiTS outperforms MiTS in 

performance for all the benchmarks with 

different interaction strength t without 

exception as all the values in column 8 in 

bold, however when the strength t = 2 for 

the benchmarks Mobile Phone, SPINS, 

Android, RFID, gzip and Tesla the 

differences of the average running times 

between MiTS and RMiTS were very small 

amount of time because for such interaction 

strength the search space size is very small 

if compared with the search spaces for 

higher strengths, thus both algorithms were 

very fast in generating test suites. As 

interaction strength goes higher the 

difference amount of time goes higher too as 

shown in the last column, especially when 

interaction strength t ≥ 4 the percentage of 

performance improvements between 50% to 

75% and the average performance 

improvements for all the interaction 

strengths is 52%. 

Usually improving the performance of a 

combinatorial problems costs the efficiency 

degradation, but the test suites generated 

with RMiTS as shown in the Table 4 

confirm that the efficiency of RMiTS is 

enhanced for 9 benchmark instances out of 

34 as compared with the original MiTS with 

better performance see the benchmark 

instances 9, 15, 16, 20, 25, 27, 29 and 34, 

the positive values in column 9 indicates the 

difference of test suites sizes between MiTS 

and RMiTS for the benchmark instances for 

which the efficiency was enhanced and the 

enhanced test suite sizes are in bold text in 

column 7. Remember, RMiTS matched 

MiTS for 12 benchmark instances that 

generated the same results but with higher 

performance especially for benchmark 

instances 23,24 and 28. Also, both MiTS 

and RMiTS generated the theoretical best 

bound test suite sizes for 10 instances that 

marked with (*) symbol. For the remaining 

tests, the RMiTS showed poor efficiency as 

compared with MiTS for 13 benchmark 

instances but the differences in average test 

suite sizes between the MiTS and RMiTS is 

very small, as the differences of 8 

benchmark instances out of the 13 

benchmark instances are less than one see 

the column 9 the negative values indicate 

the poor results, however, the differences 

are relatively small but don’t forget that the 

RMiTS results have almost higher 

performance. 

The second set of experiments which is a 

comparison of efficiency only between the 

improved algorithm RMiTS and a state-of-

the-art greedy algorithm ACTS to evaluate 

the improvements in the efficiency of the 

modified algorithm. Table 4 shows the 

comparison of the average test suite sizes 

generated by RMiTS with test suite sizes 

generated by the greedy algorithm ACTS for 

the same benchmarks used in the first set of 

experiments, the first column in the table 

represents the benchmark instance 

identification, the second column is SUT 

model, the column 3 and 4 indicate the 

number of inputs parameters and interaction 

strength respectively, column 5 contains the 

size N of test suite generated by one run of 

ACTS tool, column 6 represents the average 

of test suite sizes N generated by 20 runs of 

the improved algorithm RMiTS, and the last 

column is the differences in size between the 

two competitors. 

The observed results in Table 4 show that 

the improved RMiTS algorithm generated 

smaller test suites than ACTS for 23 

benchmark instances out of 34 as in bold 

text in column 6, surprisingly the differences 

of test sizes between ACTS and RMiTS are 

incredibly high for interaction strengths t ≥ 4 

see the benchmarks instances 14, 15, 16, 19, 

20, 25, 28, 29, 32, 33 and 34 in which the 
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RMiTS generated significantly smaller test 

suites. ACST generated smaller test suites 

only for benchmark instances 8 and 22, but 

the difference in the size of benchmark 

instance 22 is very small it is less than 0.5, 

thus only the benchmark instance 8 can be 

considerable. The RMiTS and ACTS 

generated similar results for 9 benchmark 

instances see the last column the value 0 

indicates the similarity of test suite sizes 

generated by both tools. It is important to be 

noted, 8 instances of the 9 similar results 

generated by both tools are the theoretically 

best bounds that can’t be optimized further, 

thus if we ignore these 8 similar instances, 

we can say that the RMiTS efficient than 

ACTS for the 88% of applied benchmark 

instances. 

 

7. CONCLUSION 

In this paper, we present an improvement 

for mixed neighborhood functions tabu 

search which is a meta-heuristic search 

algorithm, for generating t-way mixed 

covering array (MCA), the main 

contributions of this research are using 

random selection strategy for the two 

neighborhood functions N2 and N3 to explore 

the search space more thoroughly and 

rapidly. 

For evaluating the proposed algorithm, in 

the experiments, we used different real-

world systems with t-way testing to measure 

the quality of generated test cases. The 

results showed that RMiTS improved in 

performance for all the interaction strengths 

for about 52% as compared with original 

MiTS. Where running time is reduced 

without significant effects in the efficiency, 

also the efficiency of RMiTS still 

competitive and the test suites generated by 

RMiTS are significantly higher-quality than 

one state-of-the-art tool such as ACTS for 

about 88% of the applied benchmark 

instances. The result of both sets of 

experiments showed that the improvements 

in performance and efficiency are mainly 

targeted the higher interaction strength t ≥ 4. 

As a result, we can say that the aim of this 

work is met. 

As technology growth alongside many real-

world system growths too that includes 

constraints among input configuration, 

therefore CIT is shifting toward constraints. 

The main future challenges for this research 

are investigating the search space and time 

optimizations with the presence of 

constraints. It is worth to mention that our 

approach is unable to generate the MCA for 

benchmarks that have more than 100 

parameters for interaction strengths      

due to the full memory footprint, many 

strategies that can be used to reduce the 

memory occupation of the MCA data 

structure, such as compression techniques or 

using different strategy for storing the t-

tuples sets. However, this might affect the 

running time but there is a possibility to 

optimize the running time by implementing 

our approach in a parallel computing 

environment such as Compute Unified 

Device Architecture (CUDA) (Ploskas et al., 

2016) which is C/C++ language based 

framework runs on NVIDA Graphics 

Processing Unit (GPU), or using GPU 

programming with Matlab (Schmidt et al., 

2018). 
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Figure 1: GUI of Tesla electric car autopilot settings 

 

Table 1: Input parameters and their values of Tesla electric car autopilot settings 

# Parameter Values 

1 Autosteer off, on 

2 Summon off, on 

3 Lane Departure Warning (LDW) off, on 

4 Automatic Emergency Breaking (AEB) off, on 

5 Obstacle-Aware Acceleration (OAA) off, on 

6 Speed Limit (SL) relative, absolute 

7 Speed Limit Warning (SLW) off, display, chime 

8 Forward Collision Warning (FCW) off, late, medium, early 
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Figure 2: Modeling a 2-way CIT 

 

Table 2: 2-way test suite of Tesla electric car autopilot settings 

# Autosteer Summon LDW AEB OAA SL SLW FCW 

1 on on off off on absolute chime Medium 

2 off off on on on absolute display Late 

3 on on on on on absolute off Off 

4 on on off off off relative chime Late 

5 off off on on on absolute chime Early 

6 off on off on off relative display Early 

7 off off on off off relative off Medium 

8 off off off on off relative chime Off 

9 off off on on off relative display Medium 

10 on off off off off absolute off Early 

11 on on on off on relative display Off 

12 on on off off off relative off Late 
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Figure 3: An overview block diagram of the proposed method 
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Table 4: Efficiency(size) and performance(time in seconds) comparison between original MiTS and modified RMiTS, 

k refres to a number of paarameters in the benchmarks and t is an interaciton strength. 
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Table 5: Efficiency(size) comparison between RMiTS and state-of-the-art tool ACTS, k refers to a number of 

parameters in the benchmarks and t is an interaction strength 
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