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A B S T R A C T: 
Microbubble oscillating associated with many applications in biomedical and engineering sectors. The spherical oscillations of a 

single microbubble submerged in a quiescent liquid exerted by an acoustic force can be governed either by the Rayleigh-Plesset 

(RP) equation or by the Keller-Miksis (KM) equation under different physical assumptions. In this paper, both models were 

numerically and analytically analyzed, and the systematic parametric study was performed. The viscosity and compressibility 

effects and linearization in both models were investigated with the aids of MATLAB and Maple tools.  In KM, the effects of the 

linear and nonlinear equations of states (EOS) compared for updating density with time. At the minimum bubble radius, the liquid 

viscosity surrounding bubble surface expected to be decreased due to rising in temperature. This leads to effects the maximum 

bubble radius for upcoming cycles.  

 
 

KEY WORDS: Cavitation, Bubble Oscillation, Rayleigh-Plesset equation, Keller-Miksis, numerical methods for ODEs. 

DOI: http://dx.doi.org/10.21271/ZJPAS.32.4.10 

ZJPAS (2020) , 32(4);82-88   .       

 

 

 

1. INTRODUCTION 

 

Cavitation phenomena can be defined as the 

formation, rapid expansion and shrink of gas or 

vapor bubbles in a liquid due to reduction in liquid 

pressure locally to below the statured vapor 

pressure (Franc and Michel, 2006). This often 

occurs in many engineering processes induced by 

rapid changes in liquid situations. For instance, 

when a liquid moves in a pipe with sudden 

decrease in the pipe’s cross-section. Classically, 

cavitation is undesirable as it leads to surface 

erosion, increase noise, reduction of efficiency 

and damage in mechanical engines. 

 

 

 

 

The forces generated from cavitation 

bubbles can be applied to a wide range of 

industries including decontamination in the food 

industry, semiconductor cleaning, targeted drug 

delivery, biomedical treatments like kidney stones 

(Kerabchi et al., 2018) disintegration, promoting 

chemical processes and the removal of bacterial 

biofilm in medical and dental applications (Vyas 

et al., 2019, Manmi et al., 2020). Acoustic waves 

might be used in majority of these applications, to 

generate and enhance the cavitation in the fluid, 

hence this kind of cavitation is called acoustic 

cavitation.  

The bubble and droplet usually take a 

spherical shape due to surface tension force 

without interaction with any neighbouring 

particles or structures. Therefore, understanding 

spherical bubble oscillation is crucial, as in many 

situations the bubble’s shape during oscillation, 

can be approximated as spherical. On the other 

hand, the microbubble surface is stabilized in 

biomedical applications, to remain spherical and 
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prevent dissolution. This can usually be done by 

coating the bubble’s surface with a shell typically 

made from lipid, protein, or polymer, commonly 

known as ultrasound contrast agent (Wang et al., 

2015). 

The oscillations of a single bubble have 

been widely studied theoretically, experimentally, 

and numerically for about one century. The first 

formal attempt in 1917 was done by Rayleigh who 

described the growth and contraction of a 

spherical or approximately spherical bubble in an 

incompressible and Newtonian liquid without 

considering the surface tension force and liquid 

viscosity effects at infinite container. The pressure 

difference between pressure inside the bubble and 

the external atmospheric pressure of the 

surrounding liquid is driving the bubble motion. 

His works was motivated to investigate cavitation 

damage and erosion on a ship propeller (Plesset 

and Prosperetti, 1977).  

In 1949, Plesset (Plesset and Prosperetti, 

1977) modified his equation to include surface 

tension and viscous effects under the same 

assumptions. This leads to introduce the famous 

and basic Rayleigh-Plesset equation for radial 

bubble motion. The main weakness of the RPE, is 

the lack of consideration for the compressibility 

effects for the surrounding liquid, which means 

lack of ability to consider damping amplitude of 

oscillation from acoustic radiation. The 

shockwaves might be formed due to this acoustic 

radiation particularly when the bubble is under 

violent oscillation. Eventually, it might have a 

large impact on the bubble dynamics. 

In 1956, Keller and Kolodner (Keller and 

Kolodner, 1956) rederived the equation to 

consider the compressibility (small density 

variation).  In 1980 their equation was developed 

by Keller and Miksis (Keller and Miksis, 1980) to 

include the standing acoustic wave. This essential 

equation for spherical bubble oscillations in a 

compressible fluid with or without an external 

acoustic force, is called the Keller-Miksis 

equation (Keller and Miksis, 1980). 

In this study, viscosity and compressibility 

effects have been investigated in the RP and KM 

equations. The initial viscosity is increased from 

μ=0.001 to 0.004 and 0.008 kg (m s)-1. Also, at 

the end of the first cycle of oscillation the 

viscosity is increased from μ=0.001 to 0.004 and 

0.008 kg (m s)-1 because during bubble collapse, 

the inertia of the surrounding water causes high 

pressure and high temperature, reaching around 

10,000 kelvins in and surrounding the bubble’s 

surface. Hence, we investigated this viscous 

change and compared it with constant viscosity 

during the whole simulation. In the KM model the 

density is not constant, as it is based on the 

weakly compressible theory. Therefore, linear and 

nonlinear equations of state have been used to 

update the density at each time step and compare 

the results. Furthermore, for a small amplitude of 

bubble oscillations the RP and KM are 

approximated to the linear second order 

differential equation so we’re able to find the 

analytical solution and compare them with each 

other. 

 

2. MATHEMATICAL MODELLING  

Here we introduce the governing equation of 

spherical bubble dynamics in an incompressible 

fluid. For a Newtonian fluid, the governing 

equation reduces to the Rayleigh–Plesset equation  

(RPE) (Plesset and Prosperetti, 1977), which 

represents a second order non-linear ordinary 

differential equation with dependent variable R 

(bubble radius) and independent variable t (time). 

 ̈  
 

 
  ̇       

 

 
(  ( )       ( )  

  

 
 ̇

 
  

 
)                                             ( ) 

where   ̇ and  ̈ are velocity and acceleration of the 

bubble which are function of time (t),     and   

are the density and viscosity of the liquid,   is 

surface tension coefficient and    is vapour 

pressure. All parameters were considered as 

constant throughout this paper, unless otherwise 

stated. For oscillating bubble without acoustic 

field,   ( ) is basically a constant    and is 

usually considered as ambient pressure. In this 

paper, we investigate the more interesting case 

and includes the effects of the pressure  ( ) of a 

planar acoustic standing wave. Thus, the far-field 

pressure is, 

                 ( )      ( )             
   (      (    ))         ( ) 

where   is the angular frequency of the acoustic 

wave, and   << 1 is the pressure perturbation 
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amplitude and ϕ is the wave phase. It can be 

assuming that the pressure inside bubble 

   follows Dalton's law consist in two parts which 

are vapour pressure    and partial gas pressure. 

Furthermore, we assume that there is no heat and 

mass transfer. Therefore, the bubble pressure can 

be written as (Brennen, 2014, Grieser et al., 

2015), 

      (
  
 
)
  

                         ( ) 

where   is called ratio of specific heat. For 

adiabatic system, it is real and approximately 

constant between 1 and 2; and     is the gas 

pressure  inside bubble at some bubble size      
Using          and    to 

nondimensionalize all variables in Equation (1) 

(Wang and Manmi, 2014, Wang et al., 2015, Abo 

et al., 2018) which leads; 

 ̈    
 

 
   
 ̇     

      

                 (      )  
 

     
  ̇  

   

  
       ( )                    

Keller-Miksis equation (KM) is a second 

order nonlinear ordinary differential equation with 

the dependant variable    and independent 

variable time    which describes large amplitude 

oscillations of bubble in a Newtonian liquid and 

takes liquid compressibility  as a first order 

approximation into account. It is expressed as,   

 ̈  (  
 ̇
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where C is speed of sound in the liquid and 

                      ( )  
  

 
 ̇  

  

 
          ( )                   

If C approaches to ∞ equation (5) reduce to 

equation (1). In order to consider the 

compressibility; the density must be varying to 

transfer the wave energy between particles. 

Equations of states (EOS) are mathematical 

relationships between the variables of 

temperature, pressure, volume and moles of pure 

substance or a mixture (Smith et al., 2013). There 

are several EOS to formulate this variation, but in 

adiabatic system density must be only the function 

of pressure.  It can be simply a linear with 

pressure for ideal gas or it can be nonlinear. A 

very accurate equation of state for liquids in 

bubble dynamics is described by Tait (Brennen, 

2014, Gilmore, 1952, Koch et al., 2016), and 

states: 

    (
    

    
)

 
  
                    ( ) 

            are the ambient pressure and the 

equilibrium density of the liquid respectively, 

                      
 are knows as 

Tait exponent and  Tait pressure respectively.  
 

  
 
  

   
 

  

(
  
  
)
  
   (    )

      ( ) 

Equations (1) and (5) cannot be solved 

analytically except for very few special cases 

(Lauterborn and Kurz, 2010). However, accurate 

and stable approximate solutions can be obtained 

by using fourth order Runge-Kutta scheme (RK4). 

We used Matlab function ode45 here with the 

options of controlling the relative error and 

maximum time step to achieve stable numerical 

solution even for a high frequency microbubble 

oscillation in a short period time.  

 

3. PARAMETRIC INVESTIGATION 

3.1. Numerical investigation of RPE 

In this section, parametric studies were performed 

to investigate the effects of viscosity for the first 

five cycles on the minimum and maximum bubble 

radius, time period of each cycle. The parameters 

in this paper are             26.5 

                     N m,          
    kg m3                        and 

        (Prosperetti and Hao, 1999, Yuan et 

al., 1998, Wang, 2016) Figure 1 shows the bubble 

radius history for three different viscosity 

μ=0.001, 0.004, 0.008 kg (m s)
-1

, but in Figure 1b, 

initially in all three cases μ=0.001 and at the end 

of the first cycle it was changed to 0.004, and 0.05 

(dashed red and dotted black lines respectively). 

Many researchers reported that, in the acoustic 

cavitation sonoluminescence phenomenon occurs 

which is releasing thermal energy from the bubble 

collapse as light emission. The temperature 

exceeds several thousand Kelvins. On the other 

hand, the viscosity decreases with increasing 

temperature. Therefore, based on this we reduced 

the viscosity at the end of the first collapse in 

Figure 1b.  As can be noted in Figure 1a, b; the 

maximum bubble radius and time period at each 

cycle decrease with increasing viscosity and in all 

cases the bubble radius rapidly damping due to 

viscosity expect the cases μ=0.001 which is 

gradually damping.  
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Figure 1: The Bubble radius versus time obtained from 

numerical solution of RPE  with the parameters    
         26.5                      N m,        
      kg m3                         and 

       . (a) Constant viscosity is μ=0.001, 0.004, 0.008 

kg (m s)
-1
. (b) Initial viscosity is μ=0.001 kg (m s)

-1
, at the 

end of first cycle it changed to 0.004 kg (m s)
-1 

(dashed red 

line) and  0.008 kg (m s)
-1 

(dotted black line). 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Reducing rate of maximum bubble radius for the 

cases in Figure 1. 

 

 

Figure 2 shows that the decreasing rate of 

maximum bubble radius for the cases μ=0.004 and 

μ=0.008 to the cases μ=0.001.  When the liquid 

viscosity relatively large as in the case μ=0.008, 

difference between rate of reductions in the 

maximum bubble radius is not significant (blue 

marks) due to dominant the viscose force effects 

however, in the case μ=0.004 the difference is 

significant (red marks).  

 

3.2. Numerical investigation of KM 

In this section, nonlinear spherical 

oscillations of microbubble studied for different 

scenarios. The compressibility of the fluid is 

usually measured based on Mach number (Ma) 

which can be expressed by u/C where u is the 

velocity of the bubble surface in the fluid and C is 

the speed of sound in that fluid which is about 

1465 m/s at     Celsius. We used the same 

parameters in the case of Figure 1 unless 

otherwise stated.  

Firstly, following other researchers in the 

Literature, we assume that the Ma is constant 

throughout the whole simulation. Therefore, 

     √
     

 
    is used with three different 

viscosities μ=0.001, 0.004, and 0.008 kg (m s)
-1

. 

Figure 3a and 3b show the bubble radius history 

with viscosity either initially or at the end of the 

first cycle changed respectively. Clearly, the 

maximum bubble radius      rapidly decreasing 

and minimum bubble radius      increasing with 

time due to both viscosity and compressibility 

effects. In Figure 3a the decreasing rate of      

for μ=0.001 in the 2
nd

, 3
rd

, 4
th

 and 5
th

 cycle is 

about 44 %, 21%, 15% and 11%; for μ=0.004 

about  45%, 27%, 20% and 11%; and for μ=0.008  

50%, 31%, 18% and 9% respectively. For these 

data we can conclude that in the 2
nd

 and 3
rd

 cycle 

decreasing rate of       increase with μ, but in 

the 4
th

 and 5
th

 do not follow this trend.  

Figure 4 shows the changing rate of       

for the cases shown in the Figure 3 with cycle 

number. We can only observe some discrepancy at 

the second cycle between cases in Figure 3a and 

Figure 3b. Further both cases are approached to 

each other with the cycles number. 
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Figure 3: The Bubble radius versus time obtained from 

numerical solution of KM with speed of sound C=1465 (m 

s)
-1

 the rest of the parameters are the same as in Figure 1. (a) 

Constant viscosity is μ=0.001, 0.004, 0.008 kg (m s)
-1

. (b) 

Initial viscosity is μ=0.001 kg (m s)
-1

, at the end of first 

cycle it changed to 0.004 kg (m s)
-1 

(dashed red line) and  

0.008 kg (m s)
-1 

(dotted black line). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4:  Rate of maximum bubble radius for the cases in 

Figure 3 versus number of cycles. 

Secondly, we use Euler’s method to update 

the density with time as follows: 

 (    )   ( )      
                     ( ) 

Although the liquid (water) is considered as 

weakly compressible, still small change in the 

density may has significant effect on the bubble 

dynamics. Therefore, we used equations (9) and 

(7) to update the density linearly and nonlinearly 

respectively at each time steps as can be seen in 

Figure 5. The compressibility effects more are 

pronounced when equation (8) is used. The 

decreasing rate of the maximum bubble radius 

increase when the equation (8) used instead 

equation (9). 

 

 

 

 

 
 

 

 

Figure 5:  Bubble radius history in compressible liquid by 

setting ρ=constant=1000 (solid blue line) and using equation 

(9) (dashed red line) and using equations 7 and 8 (black 

dotted line).  

 

4. LINEARIZATION OF RPE AND KM 

In this section, we assume the oscillation 

take place around equilibrium radius   , so that 

we can write 

                             ( )    (   ( ))               (  ) 
where  ( )      Substituting (10) in (3) and 

using binomial expansion to give 

      (
 

   ( )
)
  

    *     ( )

 
   (     )

  
( ( ))

 

  +                                                 (  ) 

Equations. (10) and (11) allow us to reformulate 

RPE in equations (1) for x in the form of a linear 

harmonic-oscillation. Using (10) and (11) in (1) 

yields, 

  
 [   ( )]  ̈( )  

 

 
  
  ̇( )     

                                                                                                

  
 

 
[

   (     ( )   )             (    )

   (   ( )   ) ̇( )  
  

  
(   ( )   )

]    

 (  ) 
Neglecting the nonlinear terms in (12) and 

rearrange it to give harmonic-oscillation equation 

 ̈     ̇    
         (    )        (  ) 

where   
  

   
       

  

   
         

  
 

   
 (      

  

  
)   

which can be solved analytically, subject to initial 

bubble radius and velocity as initial conditions, to 

allow us to describe the bubble oscillations over 

(b) 
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time. The general exact solution of (13) can be 

expressed as, 

  ( )     
  (  √     

 )
    

  (  √     
 )

 

   
  (  

    )

        
          

    (    )

  
    

        
          

    (    ) (  )  

The constants    and    are to be found using the 

appropriate initial conditions of the bubble. By the 

same manner with the aid of Maple software 

(Saeed and Mustafa, 2015), we can simplify the 

KM equation, 

 ̈    ̇    
    [     (    )
      (    ) ]             (  ) 

where 
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    (    )   
       

       
         )

     
      

    
  

 

   
 ((        )  Thus the general exact 

solution can be expressed as, 

  ( )     
  (  √     

 )
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 (  

    )[     (    )        (    )]

        
          

  

           
   [     (    )        (    )]

        
          

   

When C approach to ∞ Equation (15) reduce to 

Equation (13). 

5. DISCUSSION 

The viscosity and compressibility effects are 

not always negligible in bubble dynamics, 

particularly at the end of the bubble collapse 

phases. Both effects lead to bubble radius 

damping, as we noticed this in all the figures. In 

the RP and KM, the maximum and minimum 

bubble radius and cycle period decrease with 

viscosity and with time, except in the case of 

μ=0.001 in RP which the minimum bubble radius 

doesn’t change significantly. In the KM when 

μ=0.001, the maximum bubble radius decreases 

rapidly, due to considering compressibility effects 

while in the RP decreases gradually. Furthermore, 

the exact solutions of the linearization of both 

models are similar with more terms in the KM due 

to considering compressibility effects.   

 

6. CONCLUSION 

The RP and KM equations describes the 

spherical bubble motion at infinite fluid for 

incompressible and compressible liquid, 

respectively.  In this work, we assume that the 

pressure inside bubble is uniform and it follows 

adiabatic process.  The viscous and 

compressibility effects in oscillating spherical 

microbubbles with and without the presence of the 

acoustic field were investigated for the RP and 

KM models. Based on the numerical cases, in the 

RP model, the maximum bubble radius in each 

cycle reduces linearly with the increasing 

viscosity, but in KM this was not occurred in all 

considered cases. Both models are linearized to 

the harmonic-oscillator equations with the 

assumptions of small perturbated oscillation and 

small amplitude of the excited acoustic wave. 
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