

 ZANCO Journal of Pure and Applied Sciences

 The official scientific journal of Salahaddin University-Erbil
 https://zancojournals.su.edu.krd/index.php/JPAS

 ISSN (print):2218-0230, ISSN (online): 2412-3986, DOI: http://dx.doi.org/10.21271/zjpas

 RESEARCH PAPER

GENERATING MODELS OF SOFTWARE SYSTEMS DURING

EXPLORATORY

Akreen M. Saleh

1
, Moayad Y. Potrus

2

1
Department of Software and Informatics, College of Engineering, Salahaddin University-Erbil, Kurdistan Region, Iraq

2
Department of Software and Informatics, College of Engineering, Salahaddin University-Erbil, Kurdistan Region, Iraq

A B S T R A C T:
One of the major parts of the software testing is event-driven software (EDS), all actions of the software come from events.

Interaction of the user to the graphic user interface (GUI) of the web and desktop applications will generate events, or for the

embedded systems events and signals received from equipment, these are examples of Event-Driven Software. using EDS for

software testing gives to the software tester a great result to test software because it generates a large number of events that could

be cover most of the EDS's area. In this paper, an automated full-model and sub-model generation have been introduced during

the system under testing, it produces test cases of websites to overcome faults and long time-consuming. The stage of the testing

procedure includes generating full-model of the websites then extracting sub-model from the full-model in the next stages, test

cases generated with path coverage. The proposed testing procedure has been analyzed with the four case studies consisting of

Fault Detection and Fault Detection Effectiveness. Has been testing with a manual testing method and it proved its efficiency

regarding test generation and time. Further, the sub-model test generation provides more accurate test case suite generation than

full-model testing.

KEY WORDS: MBT, Graph theory, Software testing, full-model automation, Sub-model extraction

DOI: http://dx.doi.org/10.21271/ZJPAS.32.4.2

ZJPAS (2020) , 32(4);12-21 .

1.INTRODUCTION

The recent software development market is

characterized by the increasing complexity of

implemented systems, a decline in the time to

market, and a demand for real-time operation of

these systems on various platforms. One of the

most important software development applications

is a website, Websites are client-side software

applications and accessed through browsers,

mostly consists of (HTML) HyperText Markup

Language pages it might be static and simple

(Utting and Legeard, 2007).

Testing techniques are usually classified as

black-box and white-box. Black-box (functional

testing) depends on knowledge requirements and

the client needs to determine the test cases. White

box testing means structural test or interior testing,

based on internal code structure and depends on

the programmer's skill, this testing is usually done

at the unit level. One of the best techniques that

can be applied for testing efficiency and software

quality is Model-Based Testing (MBT).

According to Mark Utting and Bruno Legeard

(Utting and Legeard, 2007), MBT allows the

automatic generation of test cases through a model

built based on the expected behaviour of the

software under test (SUT).

* Corresponding Author:
Akreen M. Saleh
E-mail: akreen.muhialdeen@su.edu.krd or agrin.muhyeadin@gmail.com

Article History:

Received: 15/10/2019
Accepted: 15/02/2020

Published: 08/09 /2020

https://zancojournals.su.edu.krd/index.php/JPAS
http://dx.doi.org/10.21271/ZJPAS.32.4.2

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
 13

ZANCO Journal of Pure and Applied Sciences 2020

MBT is an approach that has several

advantages reported in the literature, such as the

automatic test case generation, fault detection

effectiveness, and reduction in time and cost for

testing (Utting and Legeard, 2007).

In this research, an algorithm proposed to

generate automatically full-model of the website

under testing and sub-model extraction, that helps

the tester to generate automatic test case suite. The

test case suite generated from the smaller models

extracted from the full-model. In the empirical

evaluation find out that the proposed algorithms

generated better test cases suite and less time-

consuming against manually exploration strategy

and full-model compared with sub-model of the

proposed algorithm, it is clearly seen that the

testers easily can be managed sub-models for

generating .a set of test cases and more accurate

test cases suite will be generated.

There are several sources for problems in

the website testing area. The main problem is

manually generating test cases, it causes a decline

in system release time in the system under testing

(SUT). Change a requirement from the website

tester must be re-generate test cases manually.

This paper proposes to evaluate the use of

the model-based testing MBT concepts in the

design and execution of automated tests in

websites and using mutation testing to evaluate

the efficiency of automated test.

2. BACKGROUND

To face faults in software testing in

development, there are a large number of

techniques that can be applied (Myers et al.,

2012). Among them techniques defined for the

automated test case generation using behavioral

or structural model, also called a test model of the

system under testing (SUT). This approach is

known as Model-Based Testing (MBT) (De Cleva

Farto and Endo, 2015). Model-based testing

depends on three key technologies: 1. notation

used for the data model, 2. test-generation

algorithm, 3. tools to generate tests. Unlike the

generation of test infrastructure, model notations

and test-generation algorithms are portable

across(Dalal et al.). MBT divided into four main

steps: 1. modeling, 2. test generation, 2.

Concretization 4. test execution (El-Far and

Whittaker, 2002).

In modelling, the tester uses her/his

knowledge to build a test model of the system

under testing. the requirements are source of the

information for the functionality of software being

tested. An operating system, competing solutions,

libraries and other specifications are factors that

software product in an environment presented.

The tester should be learning and understand the

system under testing and test execution. It is

advised to build test models based on the

requirements, to maximize the independence

between the model and the system under testing

(Utting et al., 2012), to know and building a test

model software analysis and design can be used.

The test case generation algorithm based on the

technique used to define the test model.

Modelling techniques must own features to

create test case generation cheaper and easy

automation (El-Far and Whittaker, 2002). For the

automatic test case generation, a tool has been

used. The test model has submitted as input then a

set of test cases generated from test selection

criterion and tool. during the system under

testing, generated test cases not executable and at

the abstract level. Finally to convert test cases

from abstract level to the executable level in the

system under testing concretization will involve.

Execution of the test cases in the system under

testing comes after conversion from the abstract

level into the executable test cases. After the

execution process, the results are analyzed and

corrective actions are taken. If the test model

defines both input and output values an automatic

check may be performed.

Event Sequence Graph "ESG", can be used

to show precisely the requirements and

functionality of the system under testing to build

the test model, some modelling techniques. ESG

used to build a test model and modelling

techniques. It is assumed that the modelling

technique adopted for the model-based testing

"MBT" is formal (Hierons et al., 2009). In MBT

there are several modelling techniques used, like

Finite State Machines (Lee and Yannakakis,

1996), Labeled Transition Systems(Tretmans,

1996), and UML(Hierons et al., 2009).

In this paper, the ESG technique has been

adopted because of its ease to express

communications between events and the simplicity

to learn the requirements and functionality of the

system under testing. An ESG is a directed graph,

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
14

ZANCO Journal of Pure and Applied Sciences 2020

used to model interactions between the software

events and consists of nodes that represent events

while the edges are valid sequences of these

events (Belli et al., 2006, Yuan et al., 2011).

3. Related Work

In this section, several existing works have

presented a categorized survey of generating

models during the testing process. These related

works are categorized according to the different

strategies they have chosen for ways to create

their own test cases.

An event-flow graph consists of nodes

which represent events and edges that connect two

events. In EDS can show each event changes, e.g.

changing the colour of an input on a page in a

website (Memon, 2007).

Memon (Memon, 2007) has introduced a

technique based on the event-flow graph. In this

paper, a tool used named GUIRipper for dividing

the application and then event flow graph

generated this solution categorized as a semi-

automatic method. Event flow graph compared

with another graph such as Finite State Machine

(FSM), Complete Interaction Sequence (CIS) (Li

et al., 2007) and Genetic Model(Pargas et al.,

1999). After dividing the application overlapped

sections created (Li et al., 2007) and by using the

GUIRipper enabled features on the page will

detect between the problems.

Belli et al. (Belli et al., 2006) have

proposed an Event Sequence Graph (ESG) to

model the behaviour of GUI. A tool has been

created named GATE tool used to create and run

test cases. The tool can be work with the ESG

matrix and user input.

Herbold et al. (Herbold et al.) have

suggested usage-based testing for EDS. This

approach has three layers, that used to find which

functionality of the application is used by the user.

In the first layer users, actions are registered.

Then in the next layer, registered actions are

converted. Finally, in the last layer, the usage

profile is generated from the events.

Herbold (Herbold and Steffen, 2012) for

test case generation has proposed three new

strategies based on usage-based testing. The first

strategy, test paths are picked with a high

probability. However, the number of valid

sequences will increase exponentially. The second

strategy, to reduce the sequences number of event,

the first strategy and the random walk technique

is used. The third strategy is to provide more gain

in selecting test paths, a heuristic greedy strategy

uses. Besides, AutoQUEST platform has

developed by Herbold and Harms (Herbold and

Harms) for EDS testing. on the AutoQUEST

platform, usage-based testing is implemented and

many testing techniques have been implemented.

AutoQUEST is to present a testing technique

independent from platforms and this was one of

the main goals

Tonella et al. (Tonella and Ricca, 2004)

have introduced an extraction of the website

model in dynamic analysis. On the website, HTML

code generated by the server-side and user

actions on input values is required. In this paper,

ReWeb tool created the model, is presented as a

Markov Chain with expectation values on the

edges. The method is known as semi-automatic

because of using a tool named TestWeb tool which

is including a test generator and test executer.

In the test section test, the criterion can be

selected by the tester. In this method, like

(Herbold et al.), the model does not cover all

functionalities of the website if the input values

are not selected entirely by the user.

(Ahmed and Bures, 2019) present an

automated approach for generating models of

smart TV applications based on black-box reverse

engineering. The approach explored the user

interface of the TV apps by using a remote control

device and a model constructed cumulatively. The

approach is used as a black-box technique, a tool

has been implemented called EvoCreeper. the

model generated in runtime mode by exploring the

state of the user interface, this step is done

without any information of the internal structure

of the app.

4. Methodology

In this section proposed algorithm will be

explained for the automated full-model generation

and the strategy of extracting a sub-models from

the full-model explained that the extraction

process is done by selecting a node as a first node

and another node as a last node of the sub-model

then the algorithm extracted the sub-model from

full-model automatically and then the sub-models

ready and node-event coverage testing applied to

generated a set test cases for the website under

testing.

4.1 . Model Generation and Sub-model

Exclusion

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
 15

ZANCO Journal of Pure and Applied Sciences 2020

In this section, new strategy has been

presented of automatically generating models of

websites during testing. The technologies used in

the strategy was google chrome extension and

javascript for model creation. Figure 1,2 and 3

example of the developed google chrome

extension. The method rely on the black-box

technique for graph generation and does not need

information about the code part of the website.

The website is modelled as a directed graph

G=(N, E), where N is a set of nodes at least one

node exist, N ≠ 0, and E is a set of edges. E is a

subset of N x N possibilities.

Figure 1: Proposed algorithm browser extension main view.

Figure 2: Proposed algorithm (node and event) database.

Figure 3: Extension Full-Model and Sub-Model Generator.

In the graph, one starting node defined, ns

∈ N. The set Ne ⊆ N contains the end nodes of the

graph, where Ne ≠ 0. Each node corresponds to a

UI element (state) of the website. Every edge

communicates to possible events of the website.

These events can be triggered by google chrome

extension,

In this study, e ∈ {key up, key down,

keypress, blur, focus, click, double click, mouse

hover, mouse down, navigation} for each e ∈ E.

To identify all the important states in the website

user interface for exhibition in the graph, an

algorithm developed to detect all events and

navigations of the website, the algorithms called

GUIRipper used to detect GUI elements that rip

over the website that developed by HTML.

Algorithm 1 presents the levels of the

Model Generator Algorithm. The algorithm

detects testers all evens over GUI elements of the

website to be tested, the events are edge E and the

web page address converted to nodes of the model

N. Start node Ns is that page the algorithm

started, the algorithm first checks element type of

the HTML tags of the web page and then detect

events of each elements for instance form elements

such as 'input, radio button, checkbox and select'

for navigation checks anchor URL, when event

detected the algorithm will add to the list of events

e ∈ E and page address add to the nodes N, the

process will continue until the tester stops the

algorithm by clicking the stop button in extension

and end node of the model N algorithm stopped

and there was nothing to test.

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
16

ZANCO Journal of Pure and Applied Sciences 2020

4.2. An Automated Framework

According to the problems and challenges

so far, an automated framework would propose to

test websites. This framework shows our image for

a strategy to automate the testing process. The

framework working on the web browser which the

nowadays browsers include an extension for

developers and the framework developed for

google chrome extension. Figure(4) reveals a

summary of this framework and explains the

fundamental components and their relationship to

each other. The frameworks support only black-

box testing the tester install the extension on

google chrome web browser by clicking the start

button in the extension, the testing algorithm

started on the opened tab of the browser then

algorithm detects testers event on the website, the

events used in algorithm such as input events "key

up, key down, keypress, blur, change, focus, on

select, on submit, on reset", mouse events " mouse

over, mouse out, mouse down, mouse up, mouse

move" and click events "click, double click" detail

of the algorithm will present in section 4.2.1.

Figure 4: An automated framework of the proposed algorithm.

The algorithm uses a browser database to

store logs, figure(3) shows a part of the full-model

data in the browsers local database. then the

testing process done tester stops the algorithm,

then full-model will generate that contains nodes

and edges. The tester will generate a sub-model

from a full-model to generate test cases and

validate test cases finally test results will be

presented to the user.

4.2.1 Proposed Algorithm

To catch all the important events in the

website to present in the model for test generation,

an algorithm has been developed, that algorithm

can be able to detect all web events during user

tests the website.

Algorithm 1 shows the steps of the model

generator algorithm. when tester hits the start

button algorithm will be start and the current web

page address is the main node of the model, the

algorithm checks the type of the elements and it

detects events to know at which element this event

happens, another ability to detect navigation from

the anchor tag. The address of the page will be

adding to the list of the nodes and during

detecting an event algorithm checks the address

URL from and to the page then add to the link list

to be model. Stopping condition by tester side

after clicking the stop button of the algorithm

stops. Full-model will be generated and ready to

extract the sub-model then generate test cases.

4.2.2 Proof of Concept

In this section, the proposed algorithm will

be illustrated as shown in algorithm 1. in this case

a website developed that contains 10 nodes(pages)

and 26 events(interactions) to implement the

proposed algorithm. the algorithm implemented in

google chrome extension, at first the tester must

be installed on the browser and then the

exploration process starts by clicking the start

button in the program.

The website under testing will ready then

tester start the exploration process and the

proposed strategy will generate the full-

model(graph) automatically during the

exploration process, then the exploration process

continued until all nodes explored.

in this stage the automated full-model

ready to break into smaller parts called sub-

model. sub-model is a part of full-model, the

extraction process of sub-model from full-model

will be done by selecting the first node as a start

node Ns and another node as a last node of Nl and

then the sub-model will be ready. Sub-model that

will help the tester to be more accurate and less

time losing during generating a set of test cases

against full-model.

5. Experiential Evaluation

For evaluating the power of the model

generation and test case generation strategy. Four

case study of the website online chosen, during the

evaluation process we address the following

research questions.

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
 17

ZANCO Journal of Pure and Applied Sciences 2020

• Research question 1(RESQ1): Is

the proposed strategy able to explore and detect

nodes(pages) and events(interactions) of the

website under testing?

• Research question 2(RESQ2): Is an

automated full-model and sub-models are valid,

and it complete model(graph) in term of number

of nodes(pages) and events(interactions)?

• Research question 3(RESQ3):

What is the performance of the algorithm to detect

events of manual exploration for chosen websites?

Research in the area of exploration test

cases on the websites is very difficult. A long-time

process may be needed for the testers to generate

models and extract test cases, as it is new in

software testing. As a result, not many websites

and repositories are available for benchmarking.

Most developers develop websites in different

techniques and it is hard for the tester to test the

website during development. However, there are

some tools for generating models after completing

the system.

 Four different websites chosen of different

sizes online, to illustrate the effectiveness of our

approach. These websites are from different areas

and have differing numbers of functionalities.

Table 1 reveals the title and address of websites.

A set of experiments has been handled to

address RESQ1 and RESQ3. The purpose was to

differentiate the models and test cases of the

websites created through manual exploration. To

test our strategy against manual testing, We

guided students from software engineering study

program, we divided students into four groups of

30 participants.

Table (1) Case Studies for the implementing proposed

algorithm.

Title Link

1 Test Case study

website

github.com/agreensaleh/mbt.git

2 Salahaddin

university website

https://su.edu.krd

3 Webmail Horde http://demo.horde.org

4 CPanel for web https://cpanel.net

hosting

The extension installed on laptop or

desktop computers on google chrome browser,

algorithm stores the target events, states and

timestamps of the exploration. Every student in

each group of the website testing has been

assigned to explore and export the database of

exploration logs. The finishing of the testing was

the student decides all parts of the website to have

been explored. Then the algorithm prepared

events to generate models during testing then

automatically full-model generated. Several

attributes have been analyzed for each model, like

as the time required to build the model, the

number of nodes in the model and the unique

nodes in the model. The proposed modelling, for

generating test cases it will extract sub-model

from full-model then it will be easy to generate

test cases.

To address RESQ2, the proposed model

generation was compared against other existed

model generating algorithm such as (Ahmed and

Bures, 2019). The requirements of the generated

model at least have one node and the model must

not be empty, should have its starting node, and

all nodes of the model must have at least one

incoming edge and except the starting node.

additionally, in the model, at least one end node

must be presented. the generated model must be

able to reach from any node to the end node,

finally, every node must be reachable from the

main node

Figure 5 shows the produced directed full-

model graph and sub-model of the test case study

website. The nodes represent the pages and the

arrows(edges) represent the events. The website

consists of 10 nodes and derives by 87 Events as

shown partially in figure 5. Figure 8 and 9 show

the box plot of the results for the comparison

between the algorithm and manual generation.

Due to the personal and nondeterministic nature

of the outcomes gotten by each student, and to

ensure reasonable comparisons with more details,

box plots used to compare the result.

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
18

ZANCO Journal of Pure and Applied Sciences 2020

Figure 5: Full-model a part of test case study.

Figure 6 and 7 show the process of

applying the proposed sub-modeling technique on

the main website. As it can be seen from figure 7,

the full-model has been divided into three sub-

models in which each consist of 8,5 and 6 nodes

respectively. Moreover, these graphs consist of

4,4 and 3 events shown in table 2.

Figure 6: Extracting sub-models from full-model.

a) sub-model 1

b) Sub-Model 2

c) Sub-Model 3

Figure 7: Sub-models extracted from the automated full-

model(graph).

Table (2) Test case generation result.

Model No. Nodes Test Cases

Full-Model 18 468

 TOTAL 468

Sub-Model-1 8 30

Sub-Model-2 5 35

Sub-Model-3 7 49

 TOTAL 114

Figure 8a shows the box plot of algorithm

exploration versus manual exploration of the

graph of the website, the blue color operate as

manual exploration and the orange color

identified for the algorithm exploitation. It is clear

seen that both exploration for detecting nodes of

the website are the same, due to the small number

of pages in website. Figure 9a and table 2 show

the difference between exploring time for manual

and algorithm exploration, the exploring time for

the manual exploration may vary from each

participant’s, generating the full graph of the

website, exploring time will change from 15-20

minutes, algorithm generate the full graph during

website exploration no need time to generating

full graph. The completion of manual exploration

depends on the participant's understanding and

experience with the website. While the strategy

explored graph without need to write pages and

derive events of the website, the participant’s had

to write pages and events then generate graphs.

Figure 8b shows the result of the su

website, all pages detect by the both exploration is

less than 50 pages, manual exploring vary from

each participant’s, exactly half of the

participant’s detect pages between 32 and 46

pages, at least 25% of the participant’s between

21 and 31 pages. Exploring time shown in figure

9b and table 3, most of the participant’s generate

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
 19

ZANCO Journal of Pure and Applied Sciences 2020

the full graph between 52 and 58 minutes, while

the rest of them more than 58 and less than 110

minutes.

Figure 8c and 8c shows the manual

exploration result of the webmail and CPanel

websites. It can be seen that in table 5 shows page

comparison of the webmail, participant’s explore

pages between 44 and 80 pages and the time

exploration time exploration between 60 and 146

minutes, table 6 shows CPanel page exploration

that 90 and 140 pages explored and the time

exploration time exploration between 130 and 170

minute.

Table (3) No of pages and time exploration of the manual

against proposed algorithm.

C
a

se

st
u

d
y

T
im

e

ex
p

lo
re

d

(M
a

n
u

a
l)

N
o

.
o

f

p
a

g
es

ex
p

lo
re

d

(M
a

n
u

a
l)

T
im

e

ex
p

lo
re

d

(A
lg

o
ri

th

m
)

N
o

.
o

f

p
a

g
es

ex
p

lo
re

d

(A
lg

o
ri

th

m
)

C
a

se

st
u

d
y

w
eb

si
te

1
5

-2
0

m
in

u
te

s

1
0

 p
ag

es

0
 m

in
u

te
s

1
0

 p
ag

es

S
u

 w
eb

si
te

3
3

-1
1

0

m
in

u
te

s

1
2

-5
0

p
ag

es

0
 m

in
u

te
s

5
0

 p
ag

es

W
eb

m
a

il

w
eb

si
te

5
5

-1
5

0

m
in

u
te

s

4
4

-8
0

p
ag

es

0
 m

in
u

te
s

8
0

 p
ag

es

C
P

a
n

el

w
eb

si
te

1
3

0
-1

7
0

m
in

u
te

s

9
0

-1
4

0

p
ag

es

0
 m

in
u

te
s

1
4

0
 p

ag
es

a) Test case website

b) Su Website

c) Webmail web application

d) CPanel web application

Figure 8: Comparing the number of unique nodes detected by

algorithm exploration with the manual exploration.

a) Test case website

b) Su Website

c) Webmail web application

d) CPanel web application

Figure 9: Exploration Time comparisons between Algorithm

and Manual exploration.

One of the main features of the website is

that it can grow dynamically. This means pages

can be add or links can be increased. This will

make the regression testing more time consuming

when a node is added. the subgraph (model) will

help generate test cases that are only relayed to

the affected graphs(models) instead of the full

model. This is one of the advantages of using this

technique.

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
20

ZANCO Journal of Pure and Applied Sciences 2020

5. CONCLUSIONS

In this paper, the strategy for automatically

reverse engineering websites presented by using

the chrome extension. Events explored from

websites by involving navigation in GUI, this

happens without knowing the internal structure of

the website “it is an example of the black-box”.

The directed graph model generated after

extensively exploring events and states in a given

website. The strategy implemented in the google

chrome extension that works in a web browser or

laptop and personal computers.

To evaluate the strategy, two medium-

sized and two large websites used. The

effectiveness and performance of our strategy

demonstrated from the evaluation results. It can be

seen that the proposed strategy generated test

cases less than automated full-model and less-time

losing during generating set test cases.

To generate test cases node-event coverage

testing strategy was implemented and in this

strategy nodes(pages) N and events(interactions)

E will be multiplied which is N X E, as a result,

the number of test cases generated for the full-

model was 18 X 26 = 468 test cases and for all

sub-models is 114 test cases, the number of test

cases of the sub-model is less than full-model and

the test cases is more accurate and more efficient.

The strategy can be used to detect events

during testing and models automatically generated

tester easily can be tracked generated model. The

generated models have an advantage in stages of

developing a website in term of quality

enhancement, software testing, finding

disappeared requirements, evaluating the user

experience and provided virtualization of the

website for an understanding the events and states.

There are several possibilities for future

research. A quick step forward is to use the

strategy-generated models to test numerous

applications and identify new errors. as well, for

automatically traverse on all website events and

stated we are planning to use this strategy.

Acknowledgements

First and above all, I would like to thank God

Almighty for providing me with this opportunity

and granting me strength, knowledge, and

capability to undertake this research study and to

proceed successfully. Without his blessings, this

achievement would not have been possible.

I would like to express my deep gratitude to my

supervisor Asst. Prof. Dr. Moayad Yousif Potrus

for his patience, enthusiasm, insightful comments,

and immense knowledge. His guidance helped me

in all the time of research and writing of this

paper.

References

AHMED, B. S. & BURES, M. 2019. EvoCreeper:

Automated Black-Box Model Generation for Smart

TV Applications. IEEE Transactions on Consumer

Electronics, 65, 160-169.

BELLI, F., BUDNIK, C. J. & WHITE, L. 2006. Event-based

modelling, analysis and testing of user interactions:

approach and case study. Software Testing,

Verification and Reliability, 16, 3-32.

DALAL, S. R., JAIN, A., KARUNANITHI, N., LEATON,

J. M., LOTT, C. M., PATTON, G. C. &

HOROWITZ, B. M. Model-based testing in

practice. ACM, 285-294.

DE CLEVA FARTO, G. & ENDO, A. T. 2015. Evaluating

the model-based testing approach in the context of

mobile applications. Electronic Notes in

Theoretical Computer Science, 314, 3-21.

DEMILLO, R. A., LIPTON, R. J. & SAYWARD, F. G.

1978. Hints on Test Data Selection: Help for the

Practicing Programmer. Computer, 11, 34-41.

EL-FAR, I. K. & WHITTAKER, J. A. 2002. Model-Based

Software Testing. Hoboken, NJ, USA: John Wiley

& Sons, Inc.

HERBOLD, S., GRABOWSKI, J. & WAACK, S. A Model

for Usage-Based Testing of Event-Driven

Software. 2011/06//. IEEE, 172-178.

HERBOLD, S. & HARMS, P. AutoQUEST -- Automated

Quality Engineering of Event-Driven Software.

2013/03//. IEEE, 134-139.

HERBOLD, S. & STEFFEN. 2012. Usage-based Testing of

Event-driven Software.

HIERONS, R. M., KRAUSE, P., LÜTTGEN, G., SIMONS,

A. J. H., VILKOMIR, S., WOODWARD, M. R.,

ZEDAN, H., BOGDANOV, K., BOWEN, J. P.,

CLEAVELAND, R., DERRICK, J., DICK, J.,

GHEORGHE, M., HARMAN, M. & KAPOOR, K.

2009. Using formal specifications to support

testing. ACM Computing Surveys, 41, 1-76.

LEE, D. & YANNAKAKIS, M. 1996. Principles and

methods of testing finite state machines-a survey.

Proceedings of the IEEE, 84, 1090-1123.

LI, P., HUYNH, T., REFORMAT, M. & MILLER, J. 2007.

A practical approach to testing GUI systems.

Empirical Software Engineering, 12, 331-357.

MA, Y. S., KWON, Y. R. & OFFUTT, J. 2002. Inter-class

mutation operators for Java. Proceedings -

International Symposium on Software Reliability

Engineering, ISSRE, 2002-Janua, 352-363.

MEMON, A. M. 2007. An event-flow model of GUI-based

applications for testing. Software Testing,

Verification and Reliability, 17, 137-157.

Saleh. A. and Potrus .M/ZJPAS: 2020, 32 (4): 12-21
 21

ZANCO Journal of Pure and Applied Sciences 2020

MYERS, G. J., SANDLER, C. & BADGETT, T. 2012. The

art of software testing, John Wiley & Sons.

PARGAS, R. P., PARGAS, R. P., HARROLD, M. J. &

PECK, R. R. 1999. Test-Data Generation Using

Genetic Algorithms. SOFTWARE TESTING,

VERIFICATION AND RELIABILITY, 9, 263--

282.

TONELLA, P. & RICCA, F. 2004. Statistical testing of Web

applications. Journal of Software Maintenance and

Evolution: Research and Practice, 16, 103-127.

TRETMANS, J. 1996. Conformance testing with labelled

transition systems: Implementation relations and

test generation. 29, 49-79.

UTTING, M. & LEGEARD, B. 2007. Practical Model-

Based Testing.

UTTING, M., PRETSCHNER, A. & LEGEARD, B. 2012.

A taxonomy of model-based testing approaches.

Software Testing, Verification and Reliability, 22,

297-312.

VOAS, J. M. & M, J. 1992. PIE: a dynamic failure-based

technique. IEEE Transactions on Software

Engineering, 18, 717-727.

YUAN, X., COHEN, M. B. & MEMON, A. M. 2011. GUI

Interaction Testing: Incorporating Event Context.

IEEE Transactions on Software Engineering, 37,

559-574.

POTRUS, M. Y. 2016. Maintenance Scheduling

Optimization for Electrical Grid Using Binary Gray

Wolf Optimization Technique. ZANCO Journal of

Pure and Applied Sciences.

KANAR SHUKR MOHAMMED, M. Y. P. B. F. A. D.

2018. Effect of Hybrid Teaching Methodology and

Student Group Policy on Object Oriented Problem

Solving. ZANCO JOURNAL OF PURE AND

APPLIED SCIENCES, 30.

