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A B S T R A C T: 
A linear operator on a Hilbert space may be approximated with finite matrices by choosing an orthonormal basis of the Hilbert 

space. In this paper, we found an approximation of the S-numerical range of bounded and unbounded operator matrices by 

variation methods. Applications to Hain-L ̈st operator and Stokes operator are given.  
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1.INTRODUCTION : 

 

Suppose   is a Hilbert space, with a scalar 

product 〈   〉 and let S be a bounded self-adjoint 

operators. For an (possibly) unbounded linear 

operators            we define  

  
     {

〈     〉

〈    〉
        〈    〉     }               

where       denotes the domain. The sets   
     

generalize the well-known and widely used 

notation of classical numerical range 

     {〈    〉        || ||   }              

By the well-known Toeplitz-Hausdorff 

Theorem (Hausdorff, 1919, Toeplitz, 1918). The 

set W(A) is convex. This set has been examined 

extensively see(Gustafson and Rao, 1997, 

R.A.Horn and C.R.Johnson, 1991) and has a lot of 

applications in functional analysis, 

 

 

 

 

 

 

 

 
 

operator theory, numerical analysis, perturbation 

theory, quantum mechanics see(Bebiano and 

Providência, 1998, Gustafson and Rao, 1997, 

Halmos, 2012), and the references therein.  

There are many results concerning the interplay 

between the algebraic and analytic properties of 

an operator and the geometrical properties of its 

numerical range. Likewise, the indefinite 

numerical range motivated the interest of 

researchers see(Bebiano et al., 2008, Gustafson 

and Rao, 1997, Halmos, 2012, Li et al., 1996, 

Muhammad, 2005b, Muhammad, 2005a, 

N.Bebiano et al., 2004)): which in particular have 

investigated these relations in the Krein space 

setting. Although sharing some analogous 

properties with the classical numerical range, has 

a quite different behavior. Unlike the numerical 

range       

is not convex. On the other hand it is neither 

closed nor bounded (Li et al., 1996). 

We also define the related sets 

  
     {

〈     〉

〈    〉
        〈    〉    }          

And 

  
     {

〈     〉

〈    〉
        〈    〉     }          
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It is well-known that each of the sets   
     and 

  
     is convex set and, as         

     
  

    ,       decomposes into at most two 

convex subsets. In (Bebiano et al., 2004) boundary 

generating curves, corners and computer 

generation of the Krein space numerical range are 

investigated, in (Bebiano et al., 2005, Li et al., 

1996, Nakazato et al., 2011)relations between the 

sets   
     and   

     are discussed. 

The set       and   
     have been 

investigated. When S is a nonsingular indefinite 

Hermitian matrix, some authors use       or 

  
     as the definition for a numerical range of 

A associated with the indefinite inner product 

〈   〉  〈    〉. We list some basic properties of 

the S-numerical range that follows easily from the 

definition. 

      In this note we see how to compute       by 

projection methods, which reduce the problem to 

that of computing the S-numerical range of a 

(finite) matrix and block matrix. 

     The paper is organized as follows. In Section 

2.1 and 2.2 some theoretical results are 

investigated dealing with the approximation of S-

numerical range for a (possibly) unbounded 

operators using projection method. In Section 3, 

applying these results to compute the S-numerical 

range of operators. 

 

1.1 Definition and Results  

We initiate this subsection with a basic concept in 

functional analysis, the core of an operator, which 

will be utilized further in the remainder. For this 

reason and also for the sake of completeness, we 

remind the reader of the following well-known 

definitions. 

Definition 1.1. [(Kato, 2013), p.166] Let A be an 

operator on a Hilbert space H. The set        

is a core of A if for any        there exist 

     such that ||    ||    and ||    
  ||     
The following easy observation will be useful, and 

its proof is similar to the proof of [(Tahiri, 

2015),Theorem 2.4.12 ]. 

Theorem 1.2. If A is positive (negative) definite 

and S is indefinite, then       is the union of two 

disjoint unbounded intervals. 

Lemma 1.3. [(Kato, 2013), Problem 5.16] If A is a 

bounded and closed operator, then any linear 

submanifold   of      dense in      is a core of 

A. 

Proof Suppose that                   
      then there exist a sequence  

                        such that  

||    ||  ∑ |  |
     

      and  

||      ||  || ||||    ||    Thus   is a 

core of A. 

 

2 S-numerical range approximation using 

projection methods 

We use the following conventions. For any closed 

subspace     we denote by    the orthogonal 

projection in H onto V. For a linear operator A, if 

       then       |  denotes the 

compression of A to V. 

       Projection methods for accomplish a subset of 

the S-numerical range, under hypotheses. Only 

when one wishes to be sure of generating the 

whole of       it is important to make some 

extra assumptions. This section is devoted to the 

major results of the paper and it is divided into 

two subsections, since we distinguish between the 

estimation of the S-numerical range of a bounded 

and an unbounded operator. 

 

2.1 Bounded linear operator 

In the beginning of this section, we consider a 

bounded (linear) operator A on a complex Hilbert 

space H. We start with the following definitions. 

Definition 2.1.  Let A be an operator and       
   be an orthonormal sequence of vectors H. For 

a fixed integer    , the  x  matrices that arise 

from the operator A and the orthonormal vectors 

and          are  

   (

〈      〉

〈      〉
 

〈      〉

〈      〉

〈      〉
 

〈      〉

 
 
 
 

〈      〉

〈      〉
 

〈      〉

)      

that is the      -element of   matrix is equal to 

〈      〉, for            
Definition 2.2. let S be a self-adjoint operator, and 

         be an orthonormal sequence of 

vectors H. For a fixed integer     , the  x  

matrices that arise from the operators S and the 

orthonormal vectors          are  

   (

〈      〉

〈      〉
 

〈      〉

〈      〉

〈      〉
 

〈      〉

 
 
 
 

〈      〉

〈      〉
 

〈      〉

)               

that is the      -element of    matrix is equal to 

〈      〉, for            
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Theorem 2.3. Let A be a bounded operator in a 

Hilbert space H and S be self-adjoint operator. Let 

         be a nested family of subspaces in H, 

given by                   , where 
         is an orthonormal basis of H. 

Consider  x  matrices    and   in Eq. (5) and 

Eq. (6) respectively. Then    
            

Proof Define an isometry         by 

                                  
Suppose that      

    , then there exist an S-

unit vector     , with  || ||    such that 

  〈      〉. Choose       , such that 

       and || ||   . Then a direct computation 

shows that   〈    〉  where  ∑     
 
    . 

Thus          
Proposition 2.4. Let          and   be as in 

Theorem 2.3 and let S be a self-adjoint operator. 

Given         then    
        

      . 

Proof This is an instant consequence of the fact 

that     is a subspace of      . In detail 

If   is in    
     then there exist an S-unit 

vector       || ||    such that   
〈      〉 where    can be extended to vectors in 

     say  ̂ whose  (k+1)th-components are zero. 

It is easy to see that 〈      〉  〈        〉 and 

the result follows. 

       The following theorem stands as both a 

generalization and application of Theorem 2.3 and 

estimates the S-numerical range of a bounded 

operator by infinite union of S-numerical ranges 

of its suitable projection. 

Theorem 2.5. Let A be a bounded operator on a 

Hilbert space H. Let S be a self-adjoint operator. 

Also         ,     and    be as in Theorem 

2.3, then       ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Before proving this theorem, we require the 

following lemma. 

Lemma 2.6. Let A be a bounded operator on the 

Hilbert space H. Let          be a family 

of spaces in H with                    , 
where 〈     〉       Then 〈   ̃   ̃ 〉     

〈   ̃   ̃ 〉   , where    is the sub matrix of the 

finite matrix of inner products 〈     〉       

   ̃                   and    

               . 

Proof Since we know        〈      〉 , for 

each       Then a simple computation shows that 

〈   ̃   ̃ 〉     ∑ ∑        
 
   

 
      ̅  

〈  ̃   ̃ 〉    

Proof [Proof of Theorem 2.5.] Using the 

preceding theorem it suffices to show that 

      ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   Let        , then 

there exist an S-unit vector    H, with || ||    

and          such that    
       

      
 . 

Suppose that                       is a linear 

span of a countable of infinity orthonormal 

elements of H by Problem 1.1,   is a core of A. 

Thus by Definition 1.1 there exists a sequence 

         with each      given by       , 

where         is orthogonal projection such 

that ||    ||    and ||      ||  
|| ||||    ||   ,  Then for each     choose  

   
    ̃   ̃    

  ̃   ̃    

.  Lemma 2.6 shows that there 

exists        
     such that |    |    as 

   ; hence      ̅̅ ̅̅ ̅̅ ̅̅  ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

2.2 Unbounded linear operators 

We investigate the S-numerical range of an 

unbounded linear operator            

where      is the domain of A extending the 

result of the first subsection. 

Theorem 2.7. Let            be an 

unbounded operator a on a Hilbert space H. 

Let S be a self-adjoint operator. Let          be 

a nested family space of      given by    
                , where          is an 

orthonormal basis of H. Consider k x k  matrices 

   and    in Eq. (5) and Eq. (6) respectively in 

Theorem 2.3. then    
           . 

Proof Define an isometry         by        
                         . Suppose 

that           . Then there exist an S-unit 

vector     , with        1, and     is an 

eigenvalue of                  . Choose 

    , such that            || ||   . In a good 

view of Lemma 2.6 this immediately gives 

                 , so           
Proposition 2.8. In notation of Theorem 2.3, 

           
 is a nested sequence, and let S be 

a self-adjoint operator. Then    
     

     
       for          

Proof This is an instant sequence of the fact that 

   is the subspace of      . In detail: if  

           
      then there exist an S-unit vector 
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    , with || ||    and          such that 

           
 and   can be extended to 

vectors in     , say  ̂ whose          

components are zero. It is easy to see that 
        

=             
and the result 

follows. 

Theorem 2.9. Let A, S,   ,          be as in 

Theorem 2.7. Let                       be a 

core 

of A. Then       ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Proof In the view of Theorem 2.7 it therefore now 

suffices to show that       ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Let 

       , then there exist an S-unit vector  

x     , with || ||    and          such 

that    
       

      
 , since   is a core of A. There 

exist a sequence        
 with each    

                   for some     , such that 

||    ||    and ||      ||   . Fix      

Let  i:                        , be the standard 

isometrics as in the proof of theorem (2.3). Define 

 ̂       by  ̂        ). Consider the       

matrix      that is the (p,r)-element of      matrix 

is equal to           for            . 

Then for each     choose       ̂   ̂    
, 

Lemma 2.6 shows that there exists       
     

such that  ||    ||    as    . In view of 

Proposition 2.8 this immediately gives that  

  ⋃    
     

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

3 Numerical experiments on a matrix 

differential operator 

In this section, we will give and illustrate some 

examples based on a Schr ̈dinger operator, 

multiplication operator, Hain-L ̈st operator and 

Stocks operator to illustrate the theorems proved. 

The computations were performed in MATLAB. 

 

3.1 S-numerical range of Schr ̈dinger operator 

3.2 Example 1 

In the Hilbert space              we introduce 

the Schr ̈dinger operator  

   
  

     ,             (7) 

(with bounded potential q) and the domain of L is 

given by 

                              
and let                  be a multiplication 

operator defined on         by 

                                  

where                      and   
         and the domain of S is given by      
         
Remark 1. 

(i) For this example, because L is self-

adjoint and bounded below with purely 

discrete spectrum, the eigenvalues of L 

are given by 
                 

          
           

 

where g is the Rayleigh functional 

(Murnaghan, 1932), 

     
〈    〉

〈   〉
             

Hence  

              

      
    

    

(ii) We assume that the real valued 

potential q = 0, because if the operator 

L included a potential, for instance, 

then its eigenfunctions would not 

generally be explicitly computable. So 

still  
  

    is equipped with Dirichlet 

boundary conditions on [0, 1]. It is 

obvious the eigenvalues and 

normalized eigenfunctions for the 

operator L in         are  

              √              

                   

under the setting         
(iii) In Eq.(7), and Eq.(8) it is not difficult 

to see that, the linear span   
          is a core of each L, and S 

respectively. Where           is an 

orthonormal basis in        .  

(iv) We may use the eigenfunctions in Eq. 

(10) as basis elements for 

discretization of the type discussed in 

section 2.1, forming the matrix 

elements 〈      〉  and 〈      〉 and 

consider the infinite operator matrices 

  〈      〉 and  ̂  〈      〉. The 

matrices    and   defined in Eq .(5) 

and Eq. (6) are obtained by leading 

sub-matrices of the    and  ̂with the 

appropriate dimensions. Observe that 

〈      〉 
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and  
〈      〉   

  ∫          

 

 

                           

(v) If we assume that the Hermitian matrix 

      is non-singular, then it is not 

a restriction to consider the matrix 

         instead of    , in the 

definition of the S-numerical range, 

where    is the identity matrix. 

Figure (1) shows attempts to compute    
     

for various   and also some attempts to estimate 

these sets by qualitative means, using existing 

theorems from the literature as well as the 

theorems proved above.  

 

 
 

 
 

 

 

 

Remark 2. 

(i) It is clear the numerical range of    

for      is equal to          . 
(ii)  In this example    is positive definite 

and    is indefinite, then according to 

Theorem 1.2   
     is the union of 

two disjoint unbounded intervals 

                 . 

 

3.4 S-numerical range of Hain-L ̈st operator 

Example 2 

In the Hilbert space   
               

       we introduce the matrix differential 

operator  

  (
 ̃     

 ̃       
*                                  

on the domain 

     {
(
  

  
)        

                

                
} 

Where   ̃ is the Sturm-Liouville operator  

 ̃       with a Dirichlet boundary conditions, 

   ̃    and         . This operator was 

introduced by Hain and L¨ust in application to 

problems of magneto hydrodynamics (Hain and 

Lust, 1958), and the problems of this type were 

studied in (Langer et al., 1990), (Adamjan and 

Langer, 1995) and (Langer and Tretter, 1998). 

Now from the matrix elements   ̃      , 

  ̃      ,         ,         . With 

respect orthonormal basis in Eq. (10) and consider 

the infinite block operator matrix. 

  (
  ̃         ̃      

                
)  

The matrix   defined in (5) is obtained by taking 

leading sub-matrix of the block of  , with 

appropriate dimensions. Observe that  

  ̃                         ,     

  ̃                    ,  

                      ,  

           ∫          
 

 
           

      . 

Let S be a self-adjoint operator 

  ( ̃  ̃
  

*. 

Where  ̃ is the Sturm-Liouville operator  

 ̃       with Dirichlet boundary conditions, 

   ̃    and     . 

The domain of S in this case is given by 

     {
(
  

  
)        

                

                
} . 

By the same argument the matrix elements 

  ̃      ,   ̃      ,         , 

Figure 1: On the left-hand side, estimation of 

numerical range of𝔸𝑘for k = 4. While for the right-

hand side, estimation of  𝑊𝕊𝑘
 𝔸𝑘  for  𝑘   . 
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        . With respect orthonormal basis in 

Eq. (10) and consider the infinite block operator 

matrix. 

 ̃  (
  ̃         ̃      

                
)  

The matrix    defined in Eq. (6) are obtained by 

taking sub-matrix of the block of  , with 

appropriate dimensions. Observe that 

  ̃                         ,  

  ̃                    , 

                      , 

         ∫         
 

 
          . 

Remark 3. It is not difficult to see that the 

subspace      ̃          ( ( ̃)  

   ̃ )  (         ), is a core of A also. 

     ̃          ( ( ̃)     ̃ )  

(         ), is a core of S. 

Figure (2) shows attempts to compute    
     

for various k and also some attempts to estimate 

these sets by qualitative means, using existing 

theorems from the literature as well as the 

theorems proved above. 

 

 

 
 

 

 

Remark 4. 

(i) In order to understand the right-hand 

side result in Figure 2 it is helpful to 

find an analytical. Estimate for W(A). 

Let  ⃗  (
  

  
)       || ⃗||   , and 

let      ⃗  ⃗               
                  

        ∫ |  
 | 

 

 
   (∫     ̅̅ ̅

 

 
)  

∫  |  |
  

 
             (14) 

Equation (14) gives us an estimate for the first 

term on the right hand side of (14), 

∫ |  
 | 

 

 
    ∫ |  |

  

 
   (15) 

For the second term on the right hand side of (14), 

the Cauchy Schwarz inequality and Youngs 

inequality yield 

  (∫     ̅̅ ̅
 

 
)    (∫ |  |

  

 
 |  |

 )      (16) 

Also third term of the right hand side of equation 

(14) satisfies 

 (∫  |  |
  

 
  )          (∫ |  |

  

 
  )    (17) 

Hence from Equations  (15), (16), (17) we get that 

        ∫ |  |
  

 
     

       ∫ |  |
  

 
  .                        (18) 

This simplifies to 

       ||  ||
 
   (  ||  ||

 
)           

=           ||  ||
 
           . 

This yields 

     {
                            

                      
 

For our example these yield         . 

To estimate       observe that 

      ∫ (     )|  |
 

 

 

    
       

(     )∫ |  |
       

 

 

        

and 

      ∫ (     )|  |
 

 

 

    
       

(     )∫ |  |
        

 

 

      

This completes the estimates on W(A). 

(ii) On the other hand for the right-hand 

side, since the S-numerical range is in 

general neither bounded nor closed, it 

is difficult to generate an accurate 

computer plot of this set. For    
  and   , the description of    is 

complicated, so in our example 

Figure 2: On the left-hand side, estimation of 

numerical range of  𝔸𝑘for k = 18. While for the 

right-hand side, estimation of  𝑊𝕊𝑘
 𝔸𝑘  for  𝑘   . 
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     is bounded by the hyperbola 

centered at (0,1) and The foci of the 

hyperbolas are the eigenvalues of   . 

 

4 Conclusions 

Our results describes the practical difficulties that 

related with the S-numerical ranges of operator 

matrices and block operator matrices of 

differential operators, even so good theoretical 

outcomes are available to underpin the 

approximation procedure. Completely analytic 

approaches are important to understand while the 

numerical results are deceptive, and apparently 

numerical results should be deal with skepticism. 
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