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A B S T R A C T 

The present study used both Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) models 

for Khazir river basin to simulate the daily flow at Asmawa and Khanis gauge stations. Asmawa station lies on Khazir River while 

Khanis lies on Gomel River as a tributary of Khazir River. In the stochastic ARIMA model, the Autocorrelation function (ACF) 

and partial autocorrelation function (PACF) were used to determine how robust the ARIMA model is in predicting the 

streamflow. In this study, the Akaike Information Criterion (AIC) formula and Bayesian information criterion (BIC) were used to 

evaluate which model is more accurate. The results of this study showed that models of order ARIMA are (2,0,0)(2,1,0) and 

(2,0,1)(2,1,0) were found much better than the other models for generating and forecasting daily flow time series for 

aforementioned stations. Coefficients of determination (R
2
) were found 0.77

 
and 0.85 for both Asmawa and Khanis stations, 

respectively. However, two types of ANN models were used for analyzing the daily flow records of the same two aforementioned 

stations, Multilayer Perceptron (MLP) and Radial Basis Function (RBF). ANN-MLP model was found to be more accurate than 

the ANN-RBF for generating and forecasting the daily flow time series as the coefficient of determination provided by ANN-MLP 

for both stations were 0.83 and 0.85, respectively. In addition, the coefficients of determination produced by the ANN-RBF for 

both stations were 0.66 and 0.55, respectively. Based on the values of (R
2
) and (RMSE) obtained in the current work, one can 

conclude that the ANN-MLP model is the most accurate model among the others in terms of predicting the streamflow for 

Asmawa station, whereas the performance of both ARIMA and ANN-MLP models for the Khanis station is the same. 
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1. INTRODUCTION 

Many activities associated with the planning and 

operation of the water resources system, the 

accuracy and reliability of streamflow forecasting 

are significant. For the planning and management 

of the water resources, it is necessary to have an 

accurate forecasting model for river streamflow.  

 

 

 

Therefore, in the last decades, many deterministic 

and stochastic models have been developed, 

including parametric, nonparametric, linear, and 

nonlinear models for hydrologic time series data 

prediction (Marques et al., 2006). In this study, 

two stochastic models were applied for the Khazir 

basin to estimate their efficiency and ability for 

generating the daily streamflow data. 

In 1962, Thomas and Fiering introduced a 

statistical model, which found wide acceptance 

and can be used for a different interval of time 

series. Box and Jenkins (1970) developed ARIMA 

model, which can be used to generate time series 
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of different time intervals. The progress in 

developing and finding new ones is ongoing until 

now. Many researchers have applied the ARIMA 

model for forecasting streamflow in different 

basins. Mohammadi et al. (2005) estimated the 

spring inflow by utilizing ARIMA and ANN 

models for Amir Kabir reservoir in Iran 

(Mohammadi K., 2005). Solis et al. (2008) used 

ARIMA model for forecasting streamflow of a 

Mexican river (Solis et al., 2008). Singh et al. 

(2011) forecasted the monthly streamflow of 

Kangsabati River in India by applying ARIMA 

and X-12-ARIMA (Singh et al., 2011). Ruqaya 

(2011) used ARIMA model for forecasting the 

inflow into Dokan reservoir in Iraq (AlMasudi, 

2011). Veiga et al. (2014) developed short-term 

flow forecasting ARIMA and ANN models in the 

Bow River in Canada (Veiga et al., 2014). 

Ghimire (2017) used ARIMA model to predict 

flow for two hydrological stations in Schuylkill 

River at Berne and Philadelphia in the USA 

(Ghimire, 2017). Sameera (2017) compared the 

performance of both ARIMA and ARIMAX 

models and found that the ARIMAX model is 

better for predicting the flow of Balinda River in 

Iraq (Sameera, 2017). Khalid et al. (2018) applied 

SARIMA and Matalas models for forecasting the 

maximum and minimum daily flow of Tigris and 

Khabur Rivers in Iraq (Khalid et al., 2018). 

Artificial Neural Network (ANN) is an empirical 

model, which has been widely applied to water 

resources system problems and was found to be a 

powerful tool for the prediction of streamflow 

time series. ANN was used for modeling the 

complex hydrological processes by connecting 

inputs and outputs through mathematical functions 

without the need to know the relationship between 

the basin characteristics (Palit and Popovic, 2006). 

Werbos (1974) conduct the neural networks as a 

tool for time series forecasting, based on 

observational data. Several types of neural 

network structures were used for forecasting and 

predicting time series problems such as multilayer 

perceptron, radial basis function, recurrent, 

counter propagation, and probabilistic neural 

networks.  

The ANN model to forecast streamflow time 

series has been increasingly applied over the past 

two decades. Elena and Armando (2000) applied 

ANN model in two ways, conceptual type rainfall-

runoff models and black-box type runoff 

simulation for the Sieve River basin in Italy (Toth 

and Brath, 2000 ). Sohail et al. (2006) used a new 

approach of training artificial neural network 

model (ANN) with a real coded genetic algorithm 

(GA) named as (GAANN) model (Sohail et al., 

2006). Chowdhary and Shrivastava (2009) used 

the feed-forward neural network (FFNN) and 

radial basis function (RBF) neural network to 

forecast the river flow in India (Chowdhary and 

Shrivastava, 2009). Pandhiani and Shabri (2015) 

developed new hybrid models by integrating the 

discrete wavelet transform with an artificial neural 

network (WANN) model and discrete wavelet 

transform with least square support vector 

machine (WLSSVM) model to measure monthly 

streamflow forecasting for two rivers in Pakistan 

(Pandhiani and Shabri, 2015). Chu et al. (2018) 

forecasted runoff for the Yellow River in China by 

using multiple linear regressions (MLR), radial 

basis functions neural network (RBFNN) and 

supports vector regression (SVR) models (Chu et 

al., 2018). Zhou et al. (2018) forecasted the 

streamflow of the Jinsha River by using three 

(ANN) architectures: a radial basis function 

network, an extreme learning machine, and the 

Elman network (Zhou et al., 2018).  

The main objectives of this study are to 

investigate the Autoregressive Integrated Moving 

Average (ARIMA) and Artificial Neural Network 

(ANN) models to forecast the daily flow time 

series for Khazir and Gomel rivers at Asmawa and 

Khanis stations respectively. 

2. MATERIALS AND METHODS  

2.1 Area of study and data collection 

The area of this study is Khazir basin, which 

located in Kurdistan region - Iraq. The basin area 

is about 3185 km
2
, with a location of 43°14'00" - 

43°44'25" E longitude and 36°22'00" - 36°52'33" 

N latitude. The maximum elevation is 2165 meter 

(AMSL) at the north part of the basin, and the 

minimum elevation is 216 (AMSL) in the south 

part of the basin close to the basin outlet (Jassas et 

al., 2015). The main river in the basin is Khazir 

River, which started at Asmawa location formed 

from two side streams, one coming from 

Chamanke region and the other coming from 

Bakerman region, as shown in figure (1). Khazir 

River confluence the Gomel River at the southern 

part of the basin and then flow into the Greater 
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Zab River, which can be considers as the 

important tributaries of Tigris River. It is worth 

mentioning that Khazir River supplies the Tigris 

River by about 10%, that motivated the authors to 

select this basin as the case study in this research. 

Continuous recorded daily flow time series 

available from the period (2004 – 2015), which 

were obtained from two meteorological stations, 

first at Asmawa location (Asmawa station) which 

measured daily discharge flow of Khazir river and 

the second at Khanis location (Khanis station) that 

measured the daily discharge flow of Gomel 

River. The statistical description of the obtained 

data and the location of the aforementioned 

stations were found in tables (1) and (2).  

The first ten years (2004-2013) of the available 

records data were considered to analyze and 

calibrate both models (ARIMA and ANN) while 

the remaining two years (2014-2015) were used to 

verify both of them.   

 

 

  

 

 

 

 

  

 

 

  Figure 1: Khazir basin. 

 

Table 1: The information about the Asmawa and Khanis stations location. 

Station Name 

 

River 

UTM 

Coordinate X 

(m) 

UTM 

Coordinate Y (m) 

 

Elevation 

(m) 

Basin 

area  

(km²) 

Asmawa Khazir 380250 4075298 453 727 

Khanis Gomel 359037 4069587 441 537 

 

Table 2: The statistical information of the Asmawa and Khanis stations. 

 

Station  

Name 

 

Mean 

(m
3
/sec) 

Standard 

deviation 

(m
3
/sec) 

 

Median 

(m
3
/sec) 

 

Skewness 

(m
3
/sec) 

 

Kurtosis 

(m
3
/sec) 

Asmawa 12.74 20.23 7.42 6.93 59.08 

Khanis 6.10 9.19 2.67 4.32 32.12 
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2.2 Application of the Models: 

In the current investigation, the ARIMA and ANN 

models were used to simulate the daily streamflow 

discharge for the abovementioned stations. 

2.3 ARIMA model: 

Autoregressive Integrated Moving Average 

(ARIMA) model is a generalization of an 

Autoregressive Moving Average (ARMA) model; 

both types are fitted to time series data to present 

generalized data and predict future points in the 

series. (p,d,q) refer to ARIMA parameters, which 

were none negative integers, (p) is referred to 

the autoregressive model (number of time 

lags), (d) is the degree of differencing (the number 

of times the data had past values subtracted) 

and (q) is the order of the moving average model. 

While, the seasonal ARIMA model, which is 

denoted by SARIMA (p, d, q) (P, D, Q), in which 

(S) represents the number of periods in each 

season, and the uppercase (P,D,Q) stands for the 

autoregressive, differencing, and moving average 

terms for the seasonal part of the ARIMA model. 

Seasonal Autoregressive Integrated Moving 

Average SARIMA (p,d,q)(P,D,Q)s can be 

expressed in a mathematical form expressed in 

equation (1) (Wang, 2006): 

  φ (B) * Φ (B
S
) * (Wt -μ) = θ (B) * Θ(B

S
) * ζt                   (1) 

Where: φ is coefficient of autoregressive (AR), θ 

the coefficient of moving average (MA), Φ the 

coefficient of seasonal autoregressive, Θ is 

coefficient of the seasonal moving average, ζ is 

the random value at time t, B is backshift operator 

and  S is season length. 

Akaike (1974) suggested a mathematical criterion 

formula of building the parsimony model as 

Akaike Information Criterion (AIC) to select an 

optimal model which fits the time series data 

among several models. Further, the Bayesian 

Information Criterion (BIC) is another criterion 

that has been developed to select an optimal 

model among a finite set of models  (Solis et al., 

2008). Akaike mathematical formulation has the 

form given in equation (2). 

AIC (p, q) =N.Ln ( σ
2
 ) +2(M)                                  (2) 

                                                
 

 

Where M = p + q + P + Q                                    (3) 

While Bayesian formula described in equation (4). 

 BIC (p, q) =N.Ln ( σ2
 ) +M* Ln (N)                      (4) 

Where σ is a standard deviation and N is the 

number of available data. The model which 

possesses least AIC and BIC values will be 

considered as an optimal model.  

In this study, this concept was adopted to 

determine the more powerful model which can be 

used for forecasting of daily streamflow in Khazir 

basin. 

2.4 ANN model: 

Two types of the Artificial Neural Network 

(ANN) were applied in this research as both have 

been widely used in water resources engineering 

applications as indicated by researchers, namely; 

ANN-MLP and ANN-RBF. The details about both 

models are presented in the following:    

2.4.1 Multilayer Perceptron Neural Networks 

(MLP) 

A multilayer perceptron is a feedforward neural 

network architecture with uni-directional full 

connections between successive layers. As it is 

illustrated in figure (2), the structure of an MLP-

ANN consists of three main layers: an input layer, 

a hidden layer and an output layer of neurons. 

These three layers were connected by strength 

called weight.  There are two sets of weights: the 

input-hidden layer weights (wj,i) and the hidden-

output layer weights (wk,j). These weights provide 

the network with high flexibility to freely adapt to 

the data. 

The output results of the multilayer perceptron 

artificial neural networks can be obtained from 

equation (5): 

 ̂    *∑ (       (∑ (       )
 
      ))  

 
     +   (5) 

Where  yk is the output variable, xi is the input 

variable, n is the number of input variables, m is 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Autoregressive_moving_average
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Moving-average_model
https://en.wikipedia.org/wiki/Mathematical_model
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the number of neurons in the hidden layer, (wj,i) is the weights of input-hidden and (wk,j) is the weight  

Figure 2: Structure of multilayer perceptron functions an artificial neural network. 

of hidden-output layers, bj is the bias of the hidden 

layer and bk is the bias of the output layer,  fh is 

the activation function of the hidden layer and fo is 

the activation function of the output layer 

(Dreyfus, 2005). A direct relationship could be 

obtained using an ANN model, which needs a 

database of the set of output variables related to 

the respective input variables. These variables are 

set in dimensionless terms to obtain a general 

relationship model (Al Suhaili et al., 2014). 

2.4.2 Radial Basis Function Neural Networks 

(RBF)       

The architecture of a radial basis function neural 

network was shown in figure (3). This type may 

require more neurons than standard feed-forward 

backpropagation networks, but often they can be 

designed with lesser time (Abraham, 2004). The 

time-series flow data have been entered the 

network as an input layer, and these data were 

transferred to the hidden layer by radial basis 

function. The response of the network was 

obtained in the output layer. The mathematical 

structure of Gaussian activation function is 

demonstrated in equation (6): 

                                 

  ̂  ∑ (       (   ( 
∑ (       )

  
   

   
 ))) 

          (6) 

Where  yk is the output variable, x is the input 

variable, n is the number of neurons in the inputs 

layer, μ is the parameter which is the position of 

the center of the Gaussian while σ is its standard 

deviation. wk,j is the weight of the connection 

between the hidden neuron j and the output neuron 

k, b is the bias and m is the number of neurons in 

the hidden layer. 

 

 

 

 

 

 

 

Figure 3: Structure of typical radial basis functions an artificial neural network. 
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3. RESULTS AND DISCUSSION  

In the present study, the ARIMA model was 

applied as a single site model by using statistical 

software (NCSS version 11.0), while the ANN 

models were applied by (Matlab version 2008) 

and the package of Statistical Package for the 

Social Sciences (SPSS version 23.0) for 

generating and forecasting daily flow time series. 

However, the linear regression method was used 

to predict the missing data, especially for the 

record data for the years 2005, 2006, and 2014 for 

Khanis station. The stationary test of the data was 

conducted because the model cannot be built for 

nonstationary data (Chow, 1988). The normality 

of the time series data should be checked using the 

Kolmogorov-Smirnov test by applying for the 

MINITAB program, which shown in figure (4) 

with a non-zero skewness coefficient (
S

C ) not 

equal to zero. Transformation of the data to a 

normal distribution was carried out by the Box-

Cox method, and the coefficient (λ), was found to 

be (-0.4627, -0.225) for Asmawa and Khanis 

stations respectively. Figure (5) show the 

normality test of the time series data after 

transformation with the skewness coefficient 

equal to zero. 

The time series for both stations were found clear 

from a trend, jump and periodic. The parameters 

of the ARIMA model were found by applying the 

three stages of analysis as Identification, 

Parameters estimation, and Diagnostic. The order 

of the parameters of ARIMA models was found 

by applying the Autocorrelation Coefficient 

(ACF) and Partial Autocorrelation Coefficients 

(PACF). 

A number of ARIMA models were tested, and the 

best ARIMA (p, d, q) (P, D, Q) parameters model 

as in equation (1) was found and shown in table 

(3), based on the least values of AIC and BIC for 

Asmawa and Khanis stations. Figure (6) shows 

the Autocorrelation Coefficient (ACF) and Partial 

Autocorrelation Coefficients (PACF) for the best 

models of the aforementioned stations.  

Table 3: Parameters of the best models of ARIMA for 

Asmawa and Khanis stations. 

Station 

Name 
River 

  Best 

ARIMA 

model 

AIC BIC 

Asmawa  Khazir (2,0,0)(2,1,0) 2993.500 3011.872 

Khanis  Gomel (2,0,1)(2,1,0) 2962.986 2985.951 

 

 

 
 

 

 

       

 Figure 4: Testing of the normal distribution for Asmawa and Khanis stations by Kolmogorov-Smirnov test. 

   

 

 

 
  

 

 

 

 

 

 

 

  

Asmawa station 

 

Khanis station 

 

 

 

  

Asmawa station 

 

Khanis station 

 



Kassem. A. et al. /ZJPAS: 2020, 32 (3): 30-39 

ZANCO Journal of Pure and Applied Sciences 2020 

36 

 
  

 

 
  

  

Figure 5: Testing after transforming the series to the normal distribution for Asmawa and Khanis stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 6: Autocorrelation Function, Partial Autocorrelation Function and Residual against lag for ARIMA model of Average 

Daily Flow Series for Asmawa and Khanis Stations. 

 

The above ARIMA models were used in 

forecasting the time series of both stations, the 

results were demonstrated in figures (7) and (8) 

for the period (2014-2015) with determination 

coefficients (R
2
) of 0.77 and 0.82 and values of 

the Root Mean Square Error are 3.48 and 2.19 for 

Asmawa and Khanis stations respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Autocorrelation Function for Asmawa 

Station 

Autocorrelation Function for Khanis 

Station 

 

  

Partial Autocorrelation Function for 

Asmawa Station 

 

Partial Autocorrelation Function for 

Khanis Station 

 

 

Residual Autocorrelation Function for 

Khanis Station 

 

 

Residual Autocorrelation Function for 

Asmawa Station 
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          Figure 7: Hydrograph of the forecast and recorded data of daily flow series for Asmawa station using the ARIMA model. 

 

 

 

 

 

 

 

 

 

 
 

 

             Figure 8: Hydrograph of the forecast and recorded data of daily flow series for Khanis station using the ARIMA model. 

 

Regarding the ANN model, two types, namely, 

ANN-MLP and ANN-RBF models, were used in 

this study to forecast the daily streamflow for 

Khazir and Gomel rivers at Asmawa and Khanis 

stations, respectively. The best model was 

obtained by dividing the available recorded data 

into four seasonal groups (winter, spring, summer, 

and autumn), so each group was represented by its 

model. ANN models for Asmawa station were 

found to be MLP (15,6,1), MLP (15,8,1), MLP 

(15,6,1) and MLP (15,6,1) for aforementioned 

seasons, while for Khanis station the best models 

were found to be MLP (15,9,1), MLP (15,7,1) , 

MLP (15,4,1)  and MLP (15,8,1) respectively. 

In ANN model investigations the MLP model was 

found to be more efficient than the RBF model 

due to its high value of determination coefficients 

(R
2
) which was (0.83, 0.85) and (0.66, 0.57) for 

Asmawa and Khanis stations respectively, as 

shown in the table (4).  

The architecture structures of both types of ANN 

models are shown in table (5) and table (6), after 

several trails the best activation function for MLP 

type between the input and hidden layers was 

found to be hyperbolic tangent function, while 

between the hidden and output layers was found to 

be the identity function.  

 

Table 4: Determination coefficient (R
2
) and RMSE of ARIMA and ANN models for Asmawa and Khanis stations. 

River 

 

Station 

R
2
 RMSE 

 

ARIMA 

ANN 

(MLP) 

ANN 

(RBF) 

 

ARIMA 

ANN 

(MLP) 

ANN 

(RBF) 

Khazir Asmawa 0.77 0.83 0.66 9.867 6.542 9.609 

Gomel Khanis 0.851 0.85 0.55 3.449 4.055 6.778 
 

Table 5: The architecture of (MLP) and (RBF) for Asmawa station.  

Time series 

ANN 

architecture 

type 

Input layer 

nodes 

Hidden layer 

nodes 

Output layer 

Nodes 

Average daily  flow-

season 1 

MLP 
15 

6 
1 

RBF 8 

Average daily  flow- 

season 2 
MLP 

15 
8 

1 
RBF 10 

Average daily  flow- 

season 3 
MLP 

15 
6 

1 
RBF 10 
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Average daily  flow- 

season 4 
MLP 

15 
6 

1 
RBF 10 

Table 6: The architecture of (MLP) and (RBF) for Khanis station. 

Time series 

ANN 

architecture 

type 

Input layer 

nodes 

Hidden layer 

nodes 

Output layer 

Nodes 

Average daily  flow-

season 1 

MLP 
15 

9 
1 

RBF 10 

Average daily  flow- 

season 2 
MLP 

15 
7 

1 
RBF 10 

Average daily  flow- 

season 3 
MLP 

15 
4 

1 
RBF 10 

Average daily  flow- 

season 4 
MLP 

15 
8 

1 
RBF 10 

The online type of training was selected, which 

updates the synaptic weights after every single 

training data record, while to avoid overtraining, 

maximum training epochs computed 

automatically, and to specify the optimization 

algorithm, the gradient descent method was 

selected. 

The above ANN models were used in forecasting 

the time series for both Asmawa and Khanis 

stations, which shown in figures (9) and (10) 

respectively for the years (2014-2015).

 

 

 

 

 

 

 

 

      
 

Figure 9: Hydrograph of the forecast and recorded data of daily flow series for Asmawa station using MLP-ANN and RBF-ANN 

Models. 
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Figure 10: Hydrograph of the forecast and recorded data of daily flow series for Khanis station using MLP-ANN and RBF-ANN 

Models. 

4. CONCLUSIONS  

The ANN-MLP model was compared with the 

ARIMA model; the results revealed that the ANN 

model is more accurate than the ARIMA model in 

forecasting the daily time series for the years 

(2014-2015) for Asmawa station due to values of 

(R
2
) and (RMSE), while the performance of both 

ARIMA and ANN-MLP models for the Khanis 

station is the same. Moreover, the ANN model can 

further be used to forecast for the stations' 

understudy, to get a more useful and accurate 

design of the future proposed hydraulic structures 

in the area of the basin.  
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