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A B S T R A C T: 

This article is devoted to study the bifurcated periodic orbits from centre for a differential equation of third order. Sufficient 

conditions for the existence of a centre are obtained by using inverse Jacobi multiplier. As a result, we found four sets of centre 

conditions on the centre manifold. For a given centre, it is shown that three periodic orbits can be bifurcated from the origin under 

two sets of condition and four periodic orbits under the other sets of condition. The cyclicityes are obtained by considering the 

linear parts of the corresponding Liapunov quantities of the perturbed system.  
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INTRODUCTION 

 

We consider the following third order differential 

equation 

 

  ⃛     ̈     ̇        (    ̇  ̈)            ( ) 
 

where              and  (    ̇  ̈) is an analytic 

quadratic function.  When          , the 

centre problem on a local centre manifold of 

equation (1) is studied in (Mahdi, 2013). By 

eliminating two coefficients of the quadratic 

function  , he has found the necessary and  

conditions for the existence of a centre on the 

centre manifold for the three 4-parameter families 

 

  

 

 

 

of equation (1). Mahdi et al. (2017) have 

constructed a hybrid approach using numerical 

algebraic geometry to the center-focus problem. 

They applied their technique to have centre 

conditions for equation (1) (Mahdi, et al., 2017).  

 

Equation (1) can be transformed into a system of 

nonlinear equations. This can be introducing 

 ̇     ̈     to obtain 

 
   ̇                                                                (     )         

      ̇                                                                (     )     (2) 
   ̇                (       )         (     )         

 

where  (     )     
     

     
  

               . System above has an 

isolated critical point at the origin, the Jacobian 

matrix of system (2) at that point has a zero and 
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two pure imaginary eigenvalues under some 

conditions on the parameters. In that case, the 

origin is called zero-Hopf critical point (for more 

information see (Salih, 2017) ). Furthermore, 

under some other conditions on the parameters, 

the Jacobian matrix of system (2) at the origin has 

a non-zero and a pair of pure imaginary 

eigenvalues, in such case the origin is called Hopf 

point. For the three dimensional systems (2), a 

sufficient condition for a Hopf bifurcation is 

explained below. The characteristic polynomial 

for system (2) is given by 

 

                                            
(3) 

 

such that 

i.   ∑     
 
    ( trace of the Jacobian matrix 

of system (2) at the origin), 

ii.    determinant of the Jacobian matrix of 

system (2) at the origin, 

iii.    (        ), 

where                                   
                                and            

      are elements of the Jacobian matrix of 

system (2) at the origin (for more detail on Hopf 

bifurcation also reader can consult (Ameen, et al., 

2009), (Salih, 2009) and (Salih & Ameen, 2008)). 

Then the Hopf bifurcation take place at a point, 

Hopf point, on the surface 

 

                               and                        
(4) 

 

Using the following change of variables with 

Hopf conditions 

                

[
 
 
 
 

 

 ]
 
 
 

 [

  
 

  

  
 

 

     

]

[
 
 
 
 
  

  

  ]
 
 
 
 

                          

(5) 

we can write system (2) as  

 

 ̇        (          )                              

              ̇      
 

 
 (          )                            

(6) 

 ̇          (          )                          

where   √   and  

 

 (        )   
      

 

     
 
(       )      

     
 
(            )    

 (     )
 

 

   (     )
(   (      

    

  )   
  (          

     
     

           )     
 

   (     )
(      

    

      
          )  

    
 

There are two methods to solve the centre 

problems of system (6) at the Hopf point. The 

classical method which is called Lyapunov Centre 

Theorem (for more detail see (Bibikov, 1979)) and 

the inverse Jacobi multiplier is the modern method 

(for more detail on this method see (Berrone & 

Giacomini, 2003) and (Buica, et al., 2012)).  The 

nonzero smooth function   is called inverse 

Jacobi multiplier of system (6), if it satisfies the 

following partial differential equation: 

                               

                        ( )       ( )                                      
(7)   

 

where   is a vector field associated to (6) and     

refers  to the divergence operator. Using inverse 

Jacobi multiplier, Buică, et al.  (2012) solves the 

centre problem by the following theorem. 

 

Theorem 1. System (6) has a centre at the origin 

if and only if it admits a local analytic inverse 

Jacobi multiplier of the form  (        )      
  in a neighborhood of the origin in   . 

Moreover, when such   exists, the local analytic 

centre manifold,   , lies in    ( )  
 

Remark 1. The Hopf critical point         is a 

centre of system (2) if and only if there is an 

inverse Jacobi multiplier    at the Hopf point 

where   (  )   .  

 

Mahdi (2013) has studied the center problem of 

system (2) which has quadratic nonlinearities.  For 

the existence of a center, the necessary and 

sufficient conditions were found. In this article, 

the inverse Jacobi multiplier is used to find centre 

conditions on the centre manifold of system (2). 

Then, we perturbed the parameters to obtain a 

number of bifurcated periodic orbits. 

https://www.powerthesaurus.org/in_such_case/synonyms
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The layout of the article is as follows. The 

sufficient conditions for the existence of a centre 

are studied in section one. The summery of the 

cyclicity technique is presented in section two. 

Section Three is devoted to apply the cyclicity 

technique to find number of periodic orbits 

bifurcating from centre for the third order 

differential equation. The conclusions are finally 

made. Throughout this paper, MAPLE software is 

used to verify calculations and also to plot figures. 

 

1. CENTRE CONDITIONS 

The primary purpose of this section is to present 

sufficient conditions for the existence of the Hopf 

bifurcation and the centre on the centre manifold 

in the three dimensional system (2).  The Hopf 

critical point is called centre if there exists a 

neighborhood   of the point such that all orbits 

are periodic on it. Furthermore, if all the orbits 

have the same period, it is called isochronous 

center (Ameen, 2015). 

 

Proposition 1. System (2) has a Hopf point at the 

origin if and only if the following conditions are 

satisfied: 

 

                         and                                 
(8) 

 

Proof: First, we shall prove the necessary 

conditions (8) and let the origin be a Hopf point. 

The characteristic equation of the Jacobian matrix 

of system (2) at the origin is given by 

 

                                                               
(9) 

 

If we compare the equation above with equation 

(3), the following values of      and   are 

obtained: 

 

                         and    .                           

(10) 

 

Since the origin is a Hopf point, then the 

parameters in equation (10) satisfy equation (4): 

 

                          
     and            and       

Therefore, the conditions are held. 

 

Conversely: We shall prove sufficiency. Assume 

that            and    . Since    , 

we can assume that      . The Jacobian 

matrix of system (2) at the origin becomes 

                              [
   
   
     

]                                 

(11) 

 

and its eigenvalues are          and     . 

This means that the Jacobian matrix of system (2) 

at the origin has a pair of purely imaginary and a 

nonzero eigenvalues. Thus, the origin is a Hopf 

point.                                                           □ 

 

Now, we are looking for the inverse Jacobi 

multiplier function for system (2). The vector field 

of the system is denoted by   : 
 

               (  (     )   (     )   (     ))          
(12) 

 

which is a quadratic vector field and we let V be 

an inverse Jacobi multiplier for system (2), which 

is defined by 

 

  ∑∑∑ (         )             

 

   

 

   

 

   

    

 

            
                              

 

           
 

                
                          

      ,     (13) 

 

where                          
 

Proposition 2. System (2) has an inverse Jacobi 

multiplier if and only if one of the following 

conditions are satisfied: 

 

     *    
  (    )           
            ( 

   )+  
      *      

               
   +  

       {   
  

 
                    }  
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      *      
                 

         +  

where    √   . 

 

Proof. First, we shall prove that the conditions 

         and    are necessary. Assume that 

system (2) has an inverse Jacobi multiplier,  , 

which is defined in (13). Then it satisfies the 

following partial differential equation 

 

 ( )       ( )  
 

where   is a vector field of (2) which is defined in 

(12): 

 

 ( )  
  

  
  (     )  

  

  
  (     )

 
  

  
  (     ) 

      (                               ) 
 (        

                             )    (        
         

                 )(            
  (       )) 

         

and 

    ( )  
   (     )

  
 
   (     )

  

 
   (     )

  
 

                                       . 

 

After solving  (  )     ( )     , the set of 

solutions          and    can be obtained.  

 

Conversely: We shall now prove sufficiency. 

Assume that condition    holds. Thus, we 

consider the vector field of system (2) 

 

  (                      (    )   

              (    )             )  
 

From 

 (  )        ( )    
where 

  ∑∑∑ (         )  
           

 

   

 

   

 

   

 

 

and         (    )         is divergent 

of the vector field   , the following function is 

obtained 

 

        (     )    (    )  
       

 

which is the inverse Jacobi multiplier of system 

(2). 

 

Assume condition    holds. The vector field of 

system (2) becomes: 

 

  (                     
  

        

               ) 
 

from  ( )        , where   defined above and 

                is divergent of  , the 

following inverse Jacobi multiplier is obtained 

 

                                                                  
(14) 

 

Assume condition    holds. Then the vector field 

of system (2) is given by 

 

  (    (            
 

 
         )) 

 

from  ( )         where        and   

defined above, we obtain the following inverse 

Jacobi multiplier for system (2) 

         

 
   

 . 

 

Assume condition    holds. Then, we consider the 

vector field of system (2) 

 

  (                           

       ) 
 

from  ( )         where            and 

  defined above, the following inverse Jacobi 

multiplier is obtained  

 

                                                         
□ 

 

The inverse Jacobi multiplier is used to find 

sufficient conditions for a critical point to be a 

centre for the three dimensional system (2). The 
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explicit formula for the inverse Jacobi multiplier 

for system (2) is given by the following 

propositions. 

 

Proposition 3. The Hopf critical point at the 

origin is center of system (2) if the parameters 

satisfy the following conditions 

     *    
  (    )           
            ( 

   )+  
      *      

               
   + 

       *   
  

 
                    + 

      *      
                 

        +. 
 

Proof. It is easy to prove the above proposition by 

finding the inverse Jacobi multiplier 

corresponding to each set of conditions (Buica, et 

al., 2012). The inverse Jacobi multiplier 

corresponding to each set of conditions and 

passing through the origin are 

         (     )    (   
 )         Corresponding to    (see 

Figure 1 (a)), 

         Corresponding to    (see Figure 

2 (a)), 

          

 
   

  Corresponding to    

(see Figure 2 (b)), 

                     

Corresponding to    (see Figure 1 (b)). 

Since   (     )         for each case, 

then Theorem 1 indicates that the Hopf critical 

point at the origin is a centre.                                                                                                                       

  

Figure 1. (a): Phase portrait of system (2) satisfying 

conditions 𝜏  , 𝜔  𝑎   , with initial points (0.01, 0.01, 

-0.0102), (0.02, 0.02, -0.0208), (0.03, 0. 03, -0.0318). The 

green point is the critical point and the red plane is the 

inverse Jacobi multiplier 𝑉(𝑥 𝑦 𝑧)  (𝜔  𝜔 )𝑥  
 (𝜔   )𝑥𝑧  𝑦  𝑧  𝜔 𝑥  𝑧  

(b) Phase portrait of system (2) satisfying conditions 𝜏  , 

𝜔  𝑎  𝛼   , with initial points (0.01, 0.01, -0.00995), 

(0.02, 0.02, -0.0198), (0.03, 0. 03, -0.02955). The magenta 

point is the critical point and the Niagara Azure plane is the 

inverse Jacobi multiplier 𝑉(𝑥 𝑦 𝑧)    
 
𝑎 𝑥

  𝜔 𝑥  𝑧  

(b) Phase portrait of system (2) satisfying conditions 𝜏  , 

𝜔  𝑎   , with initial points (0., 0.1, 0), (0.1, 0.2, -0.125), 

0.2, 0. 3, -0.3333333333). The magenta point is the critical 

point and the Niagara Azure plane is the inverse Jacobi 

multiplier 𝑉(𝑥 𝑦 𝑧)   𝜔 𝑥  𝑦   𝑥𝑧  𝜔 𝑥  𝑧  

Figure 2. (a): Phase portrait of system (2) satisfying 

conditions 𝜏  , 𝜔  𝑎  𝑎  𝛼   , with initial points 

(0, 0.1, 0), (0.1, 0.1, -0.1). The magenta point is the critical 

point and the Niagara Azure plane is the inverse Jacobi 

multiplier 𝑉(𝑥 𝑦 𝑧)  𝜔 𝑥  𝑧  
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2. A CYCLICITY TECHNIQUE IN    

In the bifurcation theory, one of the contemporary 

research areas is the bifurcation of limit cycles 

from centre. They are obtained by perturbing a 

focus or centre. Here, we consider system (6), the 

set of all parameters in  (        ) and the 

corresponding parameter space is denoted by   

and  , respectively.   

 In two dimensional systems, for the first time 

Christopher (2005) has explored a useful 

technique for examining the cyclicity 

bifurcating from the centre by linearizing the 

Liapunov quantities (Christopher, 2005).  Salih 

(2015) has generalized the technique to three 

dimensional systems to examine the cyclicity 

bifurcating from centres (Salih, 2015). In addition, 

Salih and Hasso, have used the same technique to 

study the bifurcated periodic orbits in a three 

dimensional system and the L ̈ system (Salih & 

Hasso, 2017). We summarize the technique which 

is used to estimate the cyclicity in three 

dimensional system as follows. 

1. A 

point will be selected for a centre variety. 

2. We linearize the Liapunov quantities 

around this point. 

3. We check the codimension of the point. If 

the codimension of the point be   where 

the first   linear terms of Liapunov 

quantities are linearly independent, then 

    limit cycles can be bifurcated by 

small perturbation. 

Composing the Liapunov function and finding its 

Liapunov quantities is a way to determine the 

number and stability of the limit cycles. In this 

method, we define a function of the form 

                      

 (     )    
    

 

 ∑  (        )

 

   

              (  ) 

where   

                  ∑ ∑  (         )  
      

   
  
  

   
 
     

 

For system (6) and the coefficients of    satisfy 

              

 ( )    (  
    

 )    (  
    

 ) 

   (  
    

 )     
                                                                                         

(16) 

where               are polynomials and the    
is the      Liapunov constant. We assume that 

       corresponds to the centre of system (6). 

Using a perturbation technique, the following are 

obtained      

          

                          

                                         
                                                                     
(17)                     

                                                     
       
 

where       and     are calculated at the 

unperturbed terms and       and     are obtained 

at the perturbed terms of first order (the terms of 

degree one in  ), and so forth. Both the Liapunov 

function    and the Liapunov quantity    have 

same degree in parameters which is  . Substituting 

equation (17) into equation (16), the following 

equations are obtained 

 

          
             (  

    
 )     (  

    
 )  

    (18) 

 

and more general, 

           

               (  
    

 )     (  
  

  
 )    (19) 

 

Solving the pair equations (18) simultaneously, 

the linear terms of the Liapunov quantities    

(modulo the        ) will be obtained. To obtain 

the higher order terms of the Liapunov quantities, 

equation (19) is used. 

 

3. CENTRE BIFURCATION FOR SYSTEM (2) 

In this section, the technique which is presented in 

the previous section is applied to examine the 

cyclicity bifurcating from the center at the origin 

of system (2) where the parameters fulfill the 
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conditions in Proposition 3. The main outcome of 

this section are the theorems below. 

 

Theorem 2. Four limit cycles can bifurcate from 

the critical point at the origin when the parameters 

in system (2) satisfy conditions    or    of 

Proposition 3, proved that      . 

   

Proof. When condition    hold, system (2) 

reduces to 

 

 ̇                                        
 ̇                                                                   
(20) 

 ̇                    (    )  

           
               (    )    
 

and the transformed system (6) is obtained 

where 

 

 (        )   
     

 

     
  

     

     
 

     
 

     
  

      

 (     )
 
(       )  

 

   
 .                       

(21) 

 

It is easy to define the Liapunov function of 

  of equation (6) which it satisfies       : 

 

   (      (        )     
 

 
 (        )          (        ) )   

 

where  (        ) is defined in (21) and 

  
   

    
 

 ∑∑∑ (         )

 

   

 

   

  
     

     
 

 

   

 

We choose a point from center variety, 

(                       ) 
 (  (    )        (   
 )           )  
and we let 

    
 (    )    ,          ,  

       ,         ,       ( 
  

 )    ,         ,        ,   
      ,        , 
where                          and    are 

parameters after perturbation in the system.  

 

Transformation (5) is also used for perturbed 

part of vector field of system (6). Using 

MAPLE software and solving equation (18), 

the following linear independent terms of 

Liapunov quantities are obtained: 

 

1.    
 

    
(           ) 

2.    
  

             
(          

      
        

      
      

      
    

        
      

     
       

       
       

      
      

      
    

       
      

       
       

               )  

3.    
 

(      )(     )(    )(     ) (    ) 
((                     ) 

   (       

                                                    ) 
   (          

                                                              ) 
   

(                                                                 

         ) 
   (                                                   

                          ) 
   (                                    

                                            ) 
   (                   

                                                           ) 
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(                                                                  

        ) 
  (                                                   

                 ) 
  (                                             

       ) 
                  )  

4.    
 

 ( )
, where 

   is a polynomial of                             and   which has 192 different monomials. 

  ( )  is an even polynomial of degree 40 which has 21 different monomials.  

5.    
 

 ( )
, where 

   is a polynomial of                             and   which has 336 different monomials. 

  ( )  is an even polynomial of degree 70 which has 36 different monomials.  

The origin critical point of system (2) is weak focus of order 4 if and only if 

1.   
 

  
(     ), 

2.    
 

      
(         

      
      

      
      

      
     

                  
    

   )  

3.   
 

 (                  )
  (             

         
         

                    
     

             
                    

         
         

         
          

       
     

            
        

         
                               ) 

4.   
 (                                                             )    

                                                                  
 

Since  

|

|

|

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    
   
    

   
    
   
    

   
    
   
    

   
    
   
    

|

|

|

 
   

(    ) (     ) (     ) (      )
(                   

            
                                                                                         )
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and is not equal to zero, then by perturbing the 

coefficients of Liapunov quantities, in the 

neighborhood of the critical point, four limit 

cycles can be bifurcated from the critical point at 

the origin of system (2). 

 

Remark 2. By the same way, four limit cycles can 

be bifurcated from the origin of system (2) when 

the parameters satisfy condition    of Proposition 

3.  

 

Theorem 3. Three limit cycles can bifurcate from 

the critical point at the origin when the parameters 

in system (2) satisfy the conditions    or    of 

Proposition 3.   

 

 Proof. We suppose that parameters satisfy 

condition    of Proposition 3. When condition    

holds, system (2) reduces to 

 

 ̇                                       
 ̇                                                                              
(22) 

  ̇                   
           

             
and the transformed system (6) is obtained where 

 

 (        )   
  

 
     

  

  
     

(      )

    
  
     (23)   

 

 

 

It is easy to define the Liapunov function of    of 

system (6) which satisfies       : 

 

   (      (        )     
 

 
 (        )                (        )), 

 

where  (        ) is defined in (23) and 

  
   

    
 

 ∑∑∑ (         )  
     

     
 

 

   

 

   

 

   

  

We choose a point from center variety 

 

(                       )
 (                

       ) 
 

We let 

    
    ,         ,         ,  

    
    ,                  , 

      ,      
    ,     

    , 
 

where                         and    are 

parameters after perturbation in the system. 

Transformation (5) is also used for perturbed part 

of vector field of system (6). Using MAPLE 

software and solving equation (18), the following 

linear independent terms of Liapunov quantities 

are obtained:

1.    
 

    
(           )  

2.    
 

 (         )
(           

      
       

     
       

        
    

       
      

     
      

      
       

                 )  

3.    
 

 (                )
(              

        
         

       
       

    

           
       

       
        

       
       

       
       

    

         
       

       
     

       
       

       
            

       )  

4.    
 

  (                  )
(               

        
         

        
    

            
        

       
        

        
       

        
    

           
        

       
       

     
       

       
        

    

               ))  

The origin critical point of system (2) is weak focus of order 3 if and only if 

1.     
 

  
(     ), 
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2.     
  

 (     )
   (           

      
       

     
      

     
      

    

        
          )    

3.      
 

   (                )
  (            

        
        

        
    

            
        

       
        

              ). 

Since 

|

|

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

|

|

 
   (                )

 (    )(         )(                )
   

 

and it is not equal to zero, then by perturbing the 

coefficients of Liapunov quantities, in the 

neighborhood of the critical point, three limit 

cycles can be bifurcated from the critical point at 

the origin of system (2). 

 

Remark 3. By the same way, three limit cycles 

can be bifurcated from the origin of system (2) 

when the parameters satisfy condition    of 

Proposition 3. 

 

4. CONCLUSIONS  

The centre bifurcation of a third order differential 

equation (1) is studied by using a simple 

technique to estimate the cyclisity bifurcating 

from centre (see (Salih, 2015) and (Salih & Hasso, 

2017)). Four sets of sufficient condition of 

parameters for the existence of a centre are 

obtained. When we perturbed the parameters, by 

taking the linear parts of the corresponding 

Liapunov quantities of the perturbed system, a 

number of bifurcated periodic orbits have 

appeared. As a result, four limit cycles can be 

bifurcated from two sets of condition and three 

limit cycles from the other two sets of condition. 

 
 

REFERENCES 

Ameen, A. I., 2015. Computing Isochronous Center 

Conditions for Polynomial Differential Systems. 

ZANCO Journal of Pure and Applied Sciences, 

27(1), pp. 41--50. 

Ameen, A. I., Salih, R. H. & Aziz, W., 2009. Hopf 

Bifurcation Analysis for Stablity Nontrivial Critical 

Points of the Rössler's Second System. Journal of 

Koya University, Volume 12, pp. 77-95. 

Berrone, L. R. & Giacomini, H., 2003. Inverse Jacobi 

multipliers. Rendiconti del Circolo Matematico di 

Palermo, 52(1), pp. 77-130. 

Bibikov, Y. N., 1979. Local Theory of Nonlinear Analytic 

Ordinary Differential Equations. s.l.:Springer. 

Buică, A., Garc´ıa, I. & Maza, S., 2012. Existence of inverse 

Jacobi multipliers around Hopf points in Emphasis 

on the center problem. Journal of Differential 

Equation, pp. 6324- 6336. 

Christopher, C., 2005. Estimating Limit Cycle Bifurcations 

from Centers. Differential Equation with symbolic 

computation, pp. 23-35. 

Mahdi, A., 2013. Center problem for third-order ODEs. 

International Journal of Bifurcation and Chaos, 

Volume 23, p. 1350078. 

Mahdi, A., Pessoa, C. & Hauenstein, . J., 2017. A hybrid 

symbolic-numerical approach to the center-focus 

problem. Journal of Symbolic Computation, 

Volume 82, pp. 57--73. 

Salih, R. H., 2009. Studying the Stability of Origin Point for 

the Rossler's Second System. Journal of Koya 

University, Volume 10, pp. 29-44. 

Salih, R. H., 2015. HOPF BIFURCATION AND CENTRE 

BIFURCATION IN THREE DIMENSIONAL 

LOTKA-VOLTERRA SYSTEMS. s.l.:PhD thesis, 

Plymouth University. 

Salih, R. H., 2017. Zero-Hopf Bifurcation in the Rössler’s 

Second System. ZANCO Journal of Pure and 

Applied Sciences, 29(5), pp. 66-75. 

Salih, R. H. & Ameen, A. I., 2008. Limit Cycles of Lorenz 

System With Hopf Bifurcation. AL-Rafidain 

Journal of Computer Sciences and Mathematics, 

pp. 81-99. 

Salih, R. H. & Hasso, M. S., 2017. Centre bifurcations of 

periodic orbits for some special three dimensional 

systems. Electronic Journal of Qualitative Theory 

of Differential Equations, Issue 19, pp. 1-10. 

 

 


