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A B S T R A C T: 
The aim of this paper is to study the free lateral vibration of multi-cracked nanobeams, and consequently finding the 

natural frequencies of the cracked nanobeams using two methods. The model of the beam is Euler-Bernoulli in which shear effect 

has been neglected. Crack is assumed to divide the beam into two segments and these segments are connected to each other by a 

linear spring and a rotational spring. The crack induces more flexibility to the beam and reduces the stiffness of the beam and 

consequently influences the dynamic response and the natural frequencies of the beam. Cases of double-cracked and triple-

cracked nanobeams are studied. It is observed that when the number of the cracks are increased, the natural frequencies will be 

decreased. Nonlocal elasticity theory is exposed to the equation of motion. Nonlocal parameter and number of the cracks affect 

the natural frequencies of the nanobeams. For the case of cantilever, the results are slightly different in contrast to simply 

supported and clamped-clamped cases. It has been shown that some frequency modes remain constant when the crack severity 

increases, because of the location of the crack which is a node for a certain mode of vibration. 
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1. INTRODUCTION 

 

Nano-sized structures are being applied to 

highly sensitive and very fine devices, sensors and 

electromechanical systems. These nanostructures 

could be plates, beams, or other membranes [1, 2]. 

When structure is in nano-dimension, the word of 

size effect will be highlighted and it could not be 

neglected during analysis of the micro- or nano-

sized structures. 

 

 

 

 

 

 

 

 

There are several theories of continuum 

mechanics that have paid attention to the size 

effect. These theories are size dependent such as 

modified couple stress theory (MCST), couple 

stress theory(CST), strain gradient theory, and 

nonlocal elasticity theory that could be used for 

analysis of micro and nanostructures [3-6]. 

Among these continuum theories, nonlocal 

elasticity theory is one of the widely used theories 

[7]. In nonlocal theory the size effect is an 

important factor and it enters the equations for 

analyzing the wave propagation, crack, and 

dislocation problems [8, 9].  

Nonlocal continuum theory has simpler 

calculations in contrast to molecular dynamics and 

discrete atomic simulations. For the first time, 

Peddieson et al. [10] used nonlocal continuum 
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theory in nanotechnology and derived the 

equations of the nonlocal Euler- Bernoulli beam 

for the case of static. Later, Zhang et al.[11] 

extended the derived equations to the dynamic 

problems. Lu et al. [12] has proposed the general 

expression of the shear force and bending moment 

for Euler-Bernoulli beam using nonlocal elasticity. 

Wang [13], Wang et al. [14], and Wang and 

Varadan [15], have obtained equations for 

Timoshenko beam using nonlocal elasticity based 

on the nonlocal bending moment and the local 

shear force, in which the distributed transverse 

force was not considered. Reddy [16] derived 

equations of motion for all kinds of the well-

known beam theories such as Euler-Bernoulli, 

Timoshenko, and Reddy, in order to obtain 

analytical and numerical solutions on static 

deflections, buckling loads, and natural 

frequencies by using   the nonlocal elasticity 

theory relations. 

There are several researchers that have 

used the different continuum theories for linear 

and nonlinear vibration analysis of nanorods and 

nanobeams including several parameter effects 

[17-21].  

Loya et al. [22] proposed two methods to 

analyze free vibration of the nanobeams. They 

obtained the natural frequencies of the single 

cracked Euler nanobeams using nonlocal 

elasticity. Their two proposed methods give the 

same results the first one has longer calculations 

but second one leads to shorter equations to find 

natural frequencies. 

Torabi and Nafar Dastgerdi [23] studied 

the free vibration of cracked Timoshenko 

nanobeams to find the natural frequencies of the 

single-cracked nanobeams using nonlocal 

elasticity. Their results of Timoshenko well 

agreed with the Euler-Bernoulli beam results. 

Roostai and Haghpanahi [24] studied the 

free vibration of multi-cracked nanobeams by a 

different method in which the induced flexibility 

due to the crack, was used instead of crack 

severity in calculations. Loghmani and Yazdi [25] 

studied free lateral vibration of Euler-Bernoulli 

nanobeam with multiple discontinuities. Cracks 

and steps were considered as discontinuities. 

Based on wave approach, vibrations were 

assumed as moving waves along the structure. 

Mahdi Soltanpour and co-worker’s [26] studied 

free transverse vibration analysis of size 

dependent Timoshenko FG cracked nanobeams 

resting on elastic medium. Ebrahimi and 

Mahmoodi [27] studied the thermal loading effect 

on free vibration characteristics of carbon 

nanotubes (CNTs) with multiple cracks. 

Furthermore, a noticeable amount of studies has 

been conducted on the case of forced vibration 

analysis. Akbaş [28] worked on the forced 

vibration responses of functionally graded 

Timoshenko nanobeam using modified couple 

stress theory with damping effect.  

2. THEORY AND FORMULATION  

2.1. Governing equations for the Eringen 

nonlocal elasticity theory 

 

According to the nonlocal elasticity theory [7], the 

nonlocal stress-tensor (   ) at point x in a body is 

not only a function of the strain at the same point 

(local theory), but it is also a function of strains at 

all other points of the structure. As for the case of 

homogenous and isotropic nonlocal elastic solid, 

the general form of equations is written as  

   ( )  ∫ (| ́   |   )   ( )  ( ́)               (1)                                                                                                                                      

The kernel   | ́   | is the nonlocal modulus 

which incorporates into the constitutive relation 

the nonlocal effect of the stress at point x created 

by local strain at the point  ́ . | ́   |is the 

Euclidean distance. The expressions     are the 

components of the classical local stress tensor at 

point x. These components have a relation with 

the local linear strain tensor components     for 

the materials that obey Hook’s law as: 

   ( )      ( )         ( )                 (2) 

  is the ratio between a characteristic internal 

length   and characteristic external   length, and 

  is a constant which depends on the material and 

it has to be obtained experimentally or by 

matching dispersion curves of plane waves with 

those of atomic-lattice dynamics.   is given by 

  
   

 
                    (3)                                                                                                                                                        

The integral form of the relation given by 

Eq. (1) can be represented as a differential form as 

[  (   )
   ]    [  (  )   ]    

  ( )              (4)                                                                                   

 

2.2.  Nonlocal Euler-Bernoulli beam equations 

The displacements for a beam with length L along 

its axial direction and its vertical directions are: 

     (   )    
  

  
        (   )          (5)           
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Where   and   are displacements of the beam 

along the axial and the transvers directions 

respectively and there is not any motion along 

third direction (i.e.     ). Strain in x direction 

(axial) is given as 

    
  

  
   

   

   
            (6)                                                                                                                                                  

Equations of motion for the beam in axial and 

transverse directions where rotary inertia is 

neglected will be  
  

  
  (   )     

   

   
                          (7)                                                                                                                                 

 
  

  
  (   )     

   

   
                                      (8)                                                                                                                        

 

where   is the axial force,   is the horizontal 

distributed force along the axial direction,   is the 

resultant bending moment,   is the vertical 

distributed force,   is the density, and A is the 

cross-sectional area of the beam. Where   is the 

second moment of inertia and   is the shear force. 

Where  ,  ,  , and   are defined as  

  ∫        
         ∫           

  

  ∫        
         ∫     

 
                        (9)                              

According to Reddy [16] and Reddy and Pang [3], 

the nonlocal form of axial force, the bending 

moment and the shear force can be written as: 

 ( )    
  

  
 (   )

 *
 

  
(    

   

   
)  

  

  
 +  

 ( )    
   

   
 (   )

 (   
   

   
   )  

 ( )     
   

   
 (   )

 *
 

  
(    

   

   
)  

  

  
+  

        (10)                                                                                                                                                           

Equations of motion of the nonlocal nanobeam for 

the axial and the lateral displacements according 

to Reddy [16] and Reddy and Pang [3], are 

respectively as  

  
   

   
   (   )

  
  

   
     

   

   
                (11)                                                                                                                    

 

  
   

   
   *

   

   
 (   )

   

   
(
   

   
)+    

(   )
  

  

   
                                                         (12)                                                                       

For the case of free lateral vibration, all of the 

external forces must be zero, so Eq. (12) will be 

changed and used for lateral vibration as  

  
   

   
   *

   

   
 (   )

   

   
(
   

   
)+        (13)                                                                                                       

The well-known separation method will be used to 

solve the above differential equation as 

 (   )   ( ) ( )                                        (14)                                                                                                                                    

Let’s assume    
  

  
  and  ω is the natural 

frequency of non-cracked beam, then substituting 

Eq. (14) in Eq. (13) gives 
   ( )

   
  

 

  [   (   )  
   ( )

   
 ]
                       (15)                                                                                                                   

Using following dimensionless variables and 

constants given by 

  
 

 
          

   

 
                   

     

  
           

 ̅  
 

 
                                          (16)                                                   

Substituting Eq. (16) in Eq. (15) leads to reform 

Eq. (15) to a spatial equation as  

  ̅      (     ̅     ̅)                           (17)                                                                                                                  

Where  ( )  is the derivative with respect to  . We 

assume   ̅       to solve the above differential 

equation and find its roots as 

      (       )                  (18)                                                                                                                                

The roots will be as following 

                                                               

                             (19)                                                                        

The general solution of Eq. (17) by using Eq. (19) 

will be as 

 ̅( )     
         

        
        

    

  ̅( )        (   )        (   )  
     (   )         (   )                              (20)                                            

Where 

        √
√           

 
   

        √
√           

 
        (21)                                                                               

When the lateral dimensionless displacement is 

obtained from Eq. (20), the bending slope, the 

dimensionless bending moment, and the shear 

force can be obtained respectively form Eq. (10) 

as  

 ( )   ̅ ( )       

  ̅( )  
 ( )  

  
  ̅  ( )         ̅( )  

  ̅( )  
 ( )   

  
  ̅   ( )         ̅ ( )        (22)                                                                                                        

Constants   ,   ,    and    in Eq. (20) can be 

determined through the boundary conditions. 

 

2.3. Nonlocal cracked Euler-Bernoulli beam 

equations 

In this case, it is assumed that a beam has one 

open edge crack of length d located at a distance  ̅ 

from the left end and b=  ̅   (b is dimensionless 

crack distance from the left end of the beam). For 

the case of the cracked nanobeam as shown Fig. 1, 

the method which was used by Loya et al. [29], 
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and has been extended by J. Loya et al. [22]. Now 

it is being used in this paper.  

 

 

 

 

 

 

 

Fig.1 The model of the cracked beam 

 

Crack induces more flexibility to the beam and 

reduces the stiffness of the beam, therefore, a 

crack can be modeled as a linear and a rotational 

spring while the crack induces an additional strain 

energy to the beam. According to Loya et al. [22], 

the additional strain energy due to the crack is as 

    
 

 
      

 

 
                            (23)                                                                                                                              

Where    and    are the angle of rotation of the 

rotational spring and the axial displacement of the 

linear spring respectively. In this work, because 

there is not any axial force acting on the beam, the 

amount of    will be zero. Thus, there is only a 

rotational spring, and parameter    is given by 

       
   

   
      

  

  
                              (24)                                                                                                             

The crossover flexibility constant     is 

neglected because it is small enough. Now the 

slope increment    will be rewritten in the form 

of dimensionless  

   
   

 
 
   ̅( )

   
  |
   

    
   ̅( )

   
  |
   

 

    ̅  ( )                       (25)                                                                           

where   
   

 
 and it is a dimensionless form. 

For nanobeams,     has to be obtained from 

either molecular dynamics or “ab initio studies”.  

 

2.3.1. First method for cracked nanobeam 

Each crack divides the beam into two parts, so if 

the number of the cracks is increased, the number 

of parts will be increased too. Each part has its 

own equation of motion as 

 ̅ 
      (    ̅ 

    ̅  )               

 ̅ 
      (    ̅ 

    ̅  )                (26)                                                                                                  

The above equation shows the beam has only one 

crack because there are two equations of motion. 

Parameter    is the frequency parameter of the 

cracked beam, and its relation with natural 

frequency of the cracked nanobeam (   ) is 

written as 

        
     

     

  
  
                  (27)                                                                                                                       

 

The same process has been taken in order to find 

the solution for the case of non-cracked beam, is 

necessary to be exposed to find the general 

solution for the case of the cracked beam. Thus, 

the solution for differential Eq. (26) will be as 

 ̅ ( )        (   )        (   )

      (   )       (   )     

      

 ̅ ( )        (   )        (   )  
     (   )       (   )                      

                                                              (28)       

where coefficients    and     for the cracked 

beam are similar to Eq. (21) and are given as 

        √
√           

 
  

        √
√           

 
                  (29)                                                  

There are eight unknown constants in Eq. (28), 

which have to be obtained by exposing the 

boundary conditions to Eq. (28) and from the 

following compatibility equations at the crack 

position. 

 

 Continuity of the vertical displacement 

 ̅ ( )   ̅ ( )              (30)                                                                                                                                

 Jump in Bending slope 

    ̅ 
 ( )   ̅ 

 ( )     ̅ 
  ( )                   

(31)                                                                                        

 Continuity of the bending moment 

 ̅ 
  ( )         ̅ ( )  

 ̅ 
  ( )           ̅ ( )                          

    (32)                                                        

 Continuity of the shear force   

 ̅ 
   ( )         ̅ 

 ( )   ̅ 
   ( )  

       ̅ 
 ( )                (33)                                                                      

 

2.3.2. Second method for cracked beam 

 

There is another method proposed by Loya et al. 

[22], in which the number of the constants, for all 

cases of single cracked and multi-cracked 

nanobeams, for all types of beam supports and 

boundary conditions will be only four unknown 

constants, and this method gives the same results 

as the last method. These constants are: vertical 

displacement   , bending slope   , bending 

moment   , and shear force    at    .    

Linear spring 

Rotational 

spring 

ς = 0 ς = b ς = 1 
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 ̅ ( )       ( )       ( )       ( )  

     ( )                                      

 ̅ ( )   ̅ ( )       (   )            (34)                                                                                                     

Now functions   ( ) for all cases, according to 

Loya [22], are given as 

  ( )  

    (   )  

                         
(       

 ) [   (   )     (   )] 

  
    

        (35)                                                                                           

  ( )  

   (   )

  
 

                   
 (  

        ) [      (   )        (   )] 

  
   (  

    
 )

   (36)                                                                                        

  ( )  
    (   )    (   )

  
    

             (37)                                                                                                                            

  ( )  
        (   )      (   )

    (  
    

 )
           (38) 

In this method, for all types of beam supports and 

boundary conditions, there will be only four 

constants that two of them could be determined by 

the boundary conditions at    . The other two 

constants are determined by the boundary 

conditions at    . Then a coefficient matrix will 

be obtained. Determinant of this coefficient matrix 

will be set equal to zero and a new equation with 

only one variable is obtained, then the roots of this 

equation will give the frequency parameters of the 

cracked nanobeam. 
 

2.4. Nonlocal double-cracked Euler-Bernoulli 

beam equations  

 

In this section, the equations are derived for 

double-cracked nanobeam using both methods 

have been mentioned in last section. A general 

form is presented for a multi-cracked beam. 

Equations of the both methods are derived for 

three different types of supports having different 

boundary conditions. According to Eq. (28) and 

Eq. (34) the equations for both methods are 

derived respectively. 

First method to obtain the general equations, and 

consequently the coefficient matrix, as well as the 

frequency parameters, is as 

 ̅ ( )        (   )        (   )

      (   )       (   )    

        

 ̅ ( )        (   )        (   )

      (   )       (   )     

         

 ̅ ( )        (   )         (   )  
      (   )        (   )                         

                   (39) 

 

The boundary conditions for simply supported 

beam are, as 

First B.C.:  

      ̅ ( )            
  ̅ ( )   ̅ 

  ( )         ̅ ( )        (40) 

Second B.C.: 

       ̅ ( )         
      ̅ ( )   ̅ 

  ( )         ̅ ( )           (41)  

The boundary conditions for clamped-clamped 

beam are, as 

First B.C.: 

      ̅ ( )              ̅ 
 ( )                     

(42)                                                                                        

Second B.C.: 

       ̅ ( )              ̅ 
 ( )                    

(43)                                                                                

The boundary conditions for cantilever beam are, 

as 

First B.C.: 

       ̅ ( )              ̅ 
 ( )                   

(44)                                                                                   

Second B.C.:  

     ̅ ( )   ̅ 
  ( )         ̅ ( )   ,                              

   ̅ ( )   ̅ 
   ( )         ̅ 

 ( )                
(45)                                                                                                         

For all three different types of the beams 

mentioned above, the following conditions will be 

the same. 
Continuity of the vertical displacements:  

        ̅ (  )   ̅ (  )              (46)                                                                                                                                                                                                                           

        ̅ (  )   ̅ (  )                                     (47) 

Jump in Bending slopes: 

              ̅ 
 (  )   ̅ 

 (  )      ̅ 
  (  ) 

(48)                                                                                                          

             ̅ 
 (  )   ̅ 

 (  )      ̅ 
  (  ) (49)                                                                                                    

Continuity of the bending moments: 
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          ̅ 
  (  )    

     ̅ (  )   ̅ 
  (  )  

       ̅ (  )                                                                   

(50)                                

          ̅ 
  (  )    

     ̅ (  )   ̅ 
  (  )  

       ̅ (  )                                                                   

(51) 

Continuity of the shear forces:  

          ̅ 
   (  )    

     ̅ 
 (  )   ̅ 

   (  )  

       ̅ 
 (  )                                                                 

(52)                                 

           ̅ 
   (  )    

     ̅ 
 (  )   ̅ 

   (  )  

       ̅ 
 (  )                                                                 

(53) 

There are twelve equations and twelve 

unknown constants for simply supported and 

clamped-clamped nanobeams. Two of these 

constants are zero, thus only ten constants remain. 

Finally, ten equations will be obtained. As for the 

clamped-free (i.e. cantilever) nanobeam, none of 

the constants are zero but two of them are related 

to each other, that is the reason why the number of 

unknown constants will be reduced to ten and 

there will be a coefficient matrix of       and 

its determinant can give the frequencies of the 

double-cracked nanobeam. For the case of more 

than two cracks, all of the procedures are the same 

but, only the number of unknown constants will 

be increased according to the number of the 

cracks. If the crack severities are different, then it 

is necessary to write them into the equations by 

different names. For example, in the above 

equations    and    are independent from 

another, and each of them is assigned to a 

particular crack as shown in Fig. 2. The 

expressions     and    are positions of the first 

and the second crack respectively  

 

 
 

 

                                                                                                                       

Fig. 2. Doubled-cracked beam 

 

The second method will give simpler and faster 

calculations in contrast to the first method that 

was mentioned above. The second method to 

obtain the general equations, and consequently 

coefficient matrix, as well as the frequency 

parameters, is as 

 

 ̅ ( )       ( )       ( )       ( )  
     ( )                                       

 ̅ ( )   ̅ ( )        (    )       
         

 ̅ ( )   ̅ ( )        (    )      
              (54)                                                                                            

The first boundary condition for simply supported 

beam is as 

 

                           

 ̅ ( )       ( )       ( )          (55)                                                                    

First boundary condition for clamped-clamped 

beam is as 

 

                             ̅ ( )  
     ( )       ( )                 (56)                                                          

First boundary condition for cantilever beam is as 

 

                             ̅ ( )  
     ( )       ( )                     (57)   

                                                  

As shown in Eqns. (55), (56) and (57), two of the 

unknown constants out of four constants will be 

determined by the type of support at     and 

two other unknown constants will be obtained by 

a system of two equations from the boundary 

condition at    . The second method is better to 

be used because in all of the cases such as non-

cracked, single –cracked, double cracked, and 

more than two cracks, the coefficient matrix will 

be    . The determinant of this coefficient 

matrix sometimes will be a very long formula that 

has to be solved numerically to obtain its roots. 
 

2.4. Nonlocal triple-cracked Euler-Bernoulli 

beam equations  

 

This case is similar to the case of the double-

cracked nanobeam. It is only needed to expand the 

equations of the double-cracked nanobeams to the 

triple-cracked nanobeams as  

 ̅ ( )       ( )       ( )       ( )
      ( )              

 ̅ ( )   ̅ ( )        (    )               

 ̅ ( )   ̅ ( )        (    )               

 ̅ ( )   ̅ ( )        (    )              

         ̅ 
  (  )       (58)   

 

ς = 0 ς = b2   ς = 1 

 

ς = b1 

 𝜃  

K2 

 𝜃  

K1 
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3. Results and discussion 

3.1. Simply supported beam 

 

In this paper the simply supported beam is 

analyzed for the cases of double-cracked and 

triple-cracked. When the cracks are introduced to 

the beam, the natural frequencies will be 

decreased and as much as the crack severities are 

increased the natural frequencies become smaller, 

and there is an exception in this expression. The 

exception is the crack location. When the crack 

location locates on a node of a certain mode of 

vibration, that mode will not experience any 

changes by the presence of the crack and 

increasing the crack severity, consequently there 

will not be any changes in the frequency of the 

same mode. This is due to the fact that the amount 

of the bending slope at both sides of the point on 

which the crack is located, will be the same, and 

there will not be any changes in the bending slope 

and there will not be any jumps in the bending 

slope. According to Eq. (31), the crack can affect 

the beam when there is a jump in the bending 

slope. When both angles at both sides of a point 

are equal to each other, so amount of    will be 

zero and this causes the crack effect to be 

canceled at a mode of vibration in which the crack 

and one of the nodes of this mode have the same 

location.  

Another factor, which plays an important role in 

decreasing the natural frequencies, is the size 

effect introduced by scale effect parameter  . As 

  is increased, the natural frequencies will be 

reduced.  The results that have already been 

obtained for simply supported beam as non-

cracked beam by Lu et al. [12], are calculated 

again and completely coincide, then, they are used 

to be compared with the cases of the double 

cracked and the triple-cracked. Fig.3 shows the 

first four frequencies of the non-cracked simply 

supported beam (i.e.           ), and 

starting from the first mode, the successive odd 

and even vibration modes approach each other and 

are suppressed with the increase of   .When the 

number of the cracks is increased, the frequencies 

of all of the modes will be decreased, except the 

cases in which one or more cracks are located on 

the nodes of the certain modes. The results of the 

double-cracked simply supported beams are 

tabulated in Table 1.a and b. and are shown in Fig. 

4 (a, b, c and d), in which both of the crack 

severities are changed in accordance with one 

another. However, it will be possible that each 

crack severity differs from the other crack 

severities that is the reason why the crack severity 

for each crack is named by a different expression 

such as   and   . As for the case of double-

cracked, the fourth frequency remains constant 

while the crack severities are changed, this is 

because both points         and        are 

the nodes of the fourth mode. The same 

phenomenon occurs for the case of triple-cracked, 

where all three cracks are located at the nodes of 

mode four. The results of the triple-cracked 

simply supported beams are tabulated in Table 2.a 

and b. and are shown in Fig. 5 (a, b, c and d). The 

fourth mode remains constant while the crack 

severities are increased because all cracks are 

located on the nodes of the fourth mode as shown 

in Fig. 6. As the scale effect parameter is 

increased the frequencies of all modes are 

decreased. The highest amount of decreasing of 

the frequencies of all modes for any amount of the 

nonlocal parameter, is observed when the third 

crack is introduced to the beam.  

 

         Table 1. a. and b. Frequencies of double-

cracked simply supported beam with different 

nonlocal parameter   and crack severities    and 

  . Crack positions        and      . 

                                    
    

Ʌ      

     

  

       

  

       

        

        

     

     

1 3.1416 3.0044 2.6226 1.9256 

2 6.2832 6.1007 5.5522 4.2553 

3 9.4248 9.0315 8.1721 7.4180 

4 12.5664 12.5664 12.5664 12.5664 

      

Ʌ      

     

  

       

  

       

        

        

     

     

1 2.4790 2.3694 2.0584 1.4983 

2 3.8204 3.7015 3.2600 2.3268 

3 4.7722 4.5563 4.1199 3.8918 

4 5.5509 5.5509 5.5509 5.5509 

a. 
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2.8908 2.7639 2.4074 1.7604 

4.9581 4.8071 4.2799 3.1046 

6.4520 6.1629 5.5422 5.1663 

7.6407 7.6407 7.6407 7.6407 

      

     

     

         

         

        

        

     

     

2.1507 2.0552 1.7830 1.2949 

3.1815 3.0820 2.7056 1.9236 

3.9329 3.7548 3.4032 3.2282 

4.5565 4.5565 4.5565 4.5565 

b. 

Table 2.a and b. Frequencies of a triple-cracked 

simply supported beam with different nonlocal 

parameter   with three similar cracks of severity 

  at       ,      , and        . 
    

Ʌ                        

1 3.1416 2.9652 2.5239 1.8136 

2 6.2832 5.9295 5.0418 3.6171 

3 9.4248 8.8807 7.4775 5.2977 

4 12.5664 12.5664 12.5664 12.5664 

      

Ʌ                        

1 2.4790 2.3390 1.9862 1.4221 

2 3.8204 3.5974 3.0148 2.1232 

3 4.7722 4.4659 3.6264 2.4910 

4 5.5509 5.5509 5.5509 5.5509 

a. 

 
      

                       

2.8908 2.7281 2.3195 1.6640 

4.9581 4.6719 3.9320 2.7828 

6.4520 6.0459 4.9386 3.4051 

7.6407 7.6407 7.6407 7.6407 

      

                       

2.1507 2.0290 1.7218 1.2317 

3.1815 2.9953 2.5071 1.7633 

3.9329 3.6793 2.9837 2.0478 

4.5565 4.5565 4.5565 4.5565 

b.  

 

 
Fig. 3. Change of four eigenvalues of non-cracked 

simply supported beam versus nonlocal parameter 

 . 
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d. 

Fig. 4. Frequencies of a double-cracked simply 

supported beam with crack positions        and 

     . 

 

a. 

 

b. 

 

c. 

 

d. 

Fig. 5. Frequencies a triple-cracked simply 

supported beam with crack positions       , 

     , and       . 

 

 

 

 

 

 

 

 

 

 

Fig.6.  Mode shapes of simply supported beam 

and position of the nodes. 

 

3.2. Clamped-Clamped beam 

Non-cracked simply supported beam frequencies 

are obtained for different nonlocal parameter 

values. (i.e.           ) and the non-

cracked case results are shown in Fig. 7. The first 

four frequency parameters of the clamped-

clamped beam are presented in Table 3 (a and b) 

and in Fig. 8 (a, b, c, and d) for the double-

cracked beams and in Table 4 (a and b) and 

graphically in Fig. 9 for the triple-cracked beams. 

When the nonlocal parameter is increased the 

frequencies of all modes are decreased. When the 

clamped-clamped beam has two cracks at 

        and       , the frequencies will be 

decreased more in contrast to the non-cracked 

beam, and this is due to the presence of the more 

flexibility in the beam as shown in Fig. 8. In this 

case, the frequencies of all modes are decreased 
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by increasing the crack severities of the cracks and 

in fact only the crack severity    of the first crack 

is the reason of decreasing the second and the 

fourth frequencies, and    which belongs to the 

second crack, does not have any effect on 

decreasing them because the second crack is 

located on the nodes of the second and the fourth 

modes and the amount of        as shown in 

Fig. 10. Increasing the nonlocal scale effect 

parameter is another factor for decreasing the 

frequencies of the double-cracked beam. Third 

crack decreases all mode frequencies and the 

lowest amount of the frequencies belongs to the 

case of the triple-cracked beam as shown in Fig. 9 

(a, b, c, and d). In this case only the first and the 

third cracks are the reason of decreasing the 

second and the fourth modes. The third crack 

location is not the node for any modes. 

 

Table 3. Frequencies of a double-cracked 

clamped-clamped beam with different nonlocal 

parameter   and crack severities    and   . Crack 

positions        and      . 

 
    

Ʌ      

     

  

       

  

       

        

        

     

     

1 4.7300 4.6276 4.3531 3.8350 

2 7.8532 7.6974 7.2501 6.5217 

3 10.9956 10.4769 9.5173 8.8476 

4 14.1372 14.0909 14.0119 13.9498 

      

Ʌ      

     

  

       

  

       

        

        

     

     

1 3.5923 3.4947 3.1864 2.5767 

2 4.5978 4.4938 4.0780 3.6656 

3 5.4738 5.1691 4.7791 4.6427 

4 6.1504 6.0837 5.8674 5.6307 

a. 

 
      

     

     

         

         

        

        

     

     

4.2766 4.1735 3.8721 3.2575 

6.0352 5.9028 5.3861 4.7371 

7.3840 6.9713 6.3598 6.1174 

8.4624 8.3863 8.1469 7.8308 

      

     

     

         

         

        

        

     

     

3.0837 2.9949 2.7068 2.1586 

3.8165 3.7298 3.3905 3.0745 

4.5231 4.2743 3.9691 3.8669 

5.0505 4.9932 4.8082 4.6154 

b. 

 

 

 

 

 

 

 

Table 4. frequencies of a triple-cracked clamped-

clamped beam with different nonlocal parameter   

with three similar cracks of severity   at   
    ,      , and        . 

 
    

Ʌ                        

1 4.7300 4.6268 4.3497 3.6513 

2 7.8532 7.5618 6.9381 6.3018 

3 10.9956 10.2411 8.6693 7.0230 

4 14.1372 14.0397 13.8556 13.7059 

      

Ʌ                        

1 3.5923 3.4946 3.1619 2.3325 

2 4.5978 4.4193 3.9742 3.5209 

3 5.4738 5.0222 4.2248 3.7754 

4 6.1504 6.0048 5.7356 5.5906 

a. 
      

                       

4.2766 4.1734 3.8595 3.0030 

6.0352 5.8021 5.2461 4.6762 

7.3840 6.7818 5.6246 4.7921 

8.4624 8.2964 7.9512 7.7323 

      

                       

3.0837 2.9946 2.6795 1.9443 

3.8165 3.6683 3.2940 2.9138 

4.5231 4.1520 3.5236 3.1947 

5.0505 4.9253 4.7018 4.5864 

b. 
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Fig. 7. Change of four eigenvalues of non-cracked 

clamped-clamped beam versus nonlocal parameter 

 . 
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c. 

 
d. 

Fig. 8. Frequencies of a double-cracked clamped-

clamped beam with crack positions        and 
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d. 

Fig. 9. Frequencies of a triple-cracked clamped-

clamped beam with crack positions       , 

     , and       . 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Mode shapes of clamped-clamped beam 

and position of the nodes 

 

 

3.3. Cantilever beam 

 

The results of the cantilever beam for the non-

cracked case are shown in Fig. 11. Other results of 

the cantilever are presented in Table 5 and in Fig. 

12 (a, b, c, and d) for the double-cracked beams, 

and in Table 6 and in Fig. 13 (a, b, c, and d) for 

the triple-cracked beams. General mode shapes of 

a cantilever beam are shown in Fig. 14. It can be 

observed from the results that the natural 

frequencies are very sensitive to the nonlocal 

parameter in contrast to the simply supported and 

the clamped-clamped beams, especially for the 

cases in which the nonlocal parameter ( ) 

increases. The cantilever beam is not suitable to 

be used in the design of the resonators in 

nanoscale. As for the case of non-cracked (i.e. 

          ), only the first frequency 

increases by an increase in the nonlocal parameter, 

whereas the others decrease by increasing the 

parameter   and the frequencies approach each 

other in pairs as shown in Fig. 11. When   
    , one even cannot find nontrivial real 

eigenvalues. This means that starting from the first 

mode, the successive odd and even vibration 

modes approach each other and are suppressed 

with the increase of  . Thus, for the cantilever 

beam vibration mode, the magnitude of the 

exponential terms increases dramatically with the 

nonlocal parameter comparing with the traveling 

wave terms, and eventually, it restrains the 

vibration. For the cantilever as the cracks are 

introduced to the beam, the frequencies of all 

modes are reduced, and as the crack severities are 

increased the rate of decreasing the frequencies 

becomes more. The doubled-cracked cantilever 

beam results are presented in Table 5 and they are 

shown in Fig. 12 (a, b, c, and d), and when they 

are compared with the other cases, it is observed 

that all of the frequencies are decreased except the 

fourth mode frequency of case         for 

     , where it is increased. It is one of the 

abnormal results happened here. Third crack does 

not have any great effect on the first frequency of 

the cantilever beam, then the first frequency in 

both double-cracked and triple-cracked beam have 

approximately the same value for all the amounts 

of the nonlocal parameter, but frequencies of the 

other modes are decreased by introducing the third 

crack to the beam. There are some abnormal 

results obtained in the cantilever cases which have 

not been happened for the simply supported and 

the clamped-clamped beam cases. The reason is 

the fact that the higher value of   has more 

complex effect on the frequencies, especially 

when both   and   are increased simultaneously 

and it is sometimes unpredictable to know what 

will be happened for a case in which the amount 

of the nonlocal parameter is high. 

 

Table 5. First four frequency parameters for a 

double-cracked cantilever beam with different 

nonlocal parameter   and crack severities      and 

  . Crack positions         and      . 

 
    

Ʌ      

     

         

  

       

        

        

     

     

1 1.8751 1.8136 1.6255 1.2287 

2 4.6941 4.5518 4.1572 3.2994 

3 7.8548 7.6994 7.2454 6.5074 
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4 10.9955 10.4809 9.5378 8.8927 

      

Ʌ      

     

         

  

       

        

        

     

     

1 1.9543 1.8906 1.6909 1.2690 

2 3.3456 3.2155 2.8479 2.1148 

3 4.8370 4.7655 4.1575 3.6429 

4 5.2399 4.9629 4.8385 4.8043 

a. 
      

     

     

         

         

        

        

     

     

1.8919 1.8299 1.6394 1.2374 

4.1924 4.0460 3.6277 2.7481 

6.0674 5.9395 5.4040 4.7359 

7.3617 6.9726 6.4311 6.2394 

      

     

     

         

         

        

        

     

     

2.1989 2.1380 1.8903 1.3706 

2.4809 2.3731 2.1291 1.6387 

… … 3.5533 3.0490 

… … 3.9588 4.0261 

b. 

 

Table 6. Frequencies of a triple-cracked cantilever 

beam with different nonlocal parameter   with 

three similar cracks of severity   at        , 
      and        . 

 
    

Ʌ                        

1 1.8751 1.8121 1.6206 1.2214 

2 4.6941 4.4054 3.6597 2.5515 

3 7.8548 6.9997 5.2577 3.8570 

4 10.9955 9.9345 8.1246 6.6601 

      

Ʌ                        

1 1.9543 1.8950 1.7050 1.2886 

2 3.3456 3.1834 2.7516 2.0012 

3 4.8370 … 3.8404 2.5818 

4 5.2399 … 4.0351 3.6505 

a. 

 
      

                       

1.8919 1.8299 1.6392 1.2371 

4.1924 4.0155 3.5370 2.6288 

6.0674 5.7618 4.9197 3.4561 

7.3617 6.7084 5.5042 4.7355 

      

                       

2.1989 … … … 

2.4809 … … … 

… … … … 

… … … … 

b. 

 

 
Fig. 11. Change of four eigenvalues of non-

cracked cantilever beam versus nonlocal 

parameter   
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c. 

 
d. 

 

Fig. 12. Frequencies of a double-cracked 

cantilever beam with crack positions         
and      .  
 

 
a. 

 
b. 

 
c. 

 
d. 

Fig. 13. Frequencies of a triple-cracked cantilever 

beam with crack positions       ,      , and 

      . 

 

Fig. 14. Mode shapes of cantilever beam and 

position of the nodes. 

 

4. Conclusions 

 

In this paper, free vibration analysis of double-

cracked and triple-cracked nanobeams for three 

different types of beam supports, including simply 

supported, clamped-clamped, and cantilever is 

exposed to find the natural frequencies. The crack 

is modeled as a rotational spring and the value of 

the crack severities are calculated using molecular 

dynamics for the nanobeams. The effect of the 

crack severities, number of the cracks, and the 

nonlocal parameter are checked in this paper. The 

nonlocal parameter is considered in the equations 

and its effect on the frequencies of all studied 
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cases is determined. The Following conclusions 

have been made based on the results obtained 

throughout this paper: 

 In the cases of the simply supported and 

the clamped-clamped as the crack severity 

increases, the frequencies decrease for all 

values of the nonlocal parameter.  

 As the position of the crack gets near the 

fixed end, the crack effect decreases. As 

the number of the cracks is increased, there 

will be a reduction in the frequencies.  

 As for the cantilever nanobeam, the results 

are somehow complicated. When the crack 

position is closer to the free end, the 

frequencies of some modes increase and 

this is a new phenomenon that was 

observed here.  

 For the cantilever nanobeam, the small 

size effect parameter (nonlocal parameter) 

has the greatest effect among three cases 

of support nanobeams.  

 The first mode frequency of the cantilever 

beam increases by an increase in the 

nonlocal parameter. 
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