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ABSTRACT 

Recent years have witnessed an exponential rise in wireless networks and allied 
interoperable distributed computing frameworks, where the different sensory units 
transfer real-world event data to the network analyzer for run-time decisions. There 
exists an array of applications employing edge- internet of things (Edge-IoT) where 
the edge nodes collect local data to perform real-time decisions. However, the at-hand 
edge-IoT systems being decentralized, infrastructure-less, and dynamic remain 
vulnerable to man-in-the-middle attacks, intrusion, denial of service attacks, etc. 
Though in the past, numerous efforts were made towards intrusion detection in IoT 
networks, the major approaches focused merely on standalone intrusion detection, 
and therefore their scalability towards multiple attack detection remains unaddressed. 
On the contrary, applying a unit intrusion detection system for each type of attack can 
impose resource exhaustion and delay. Recently authors have used deep learning 
methods like convolutional neural network (CNN), and long- and short-term memory 
(LSTM) to perform learning-based intrusion detection. However, being reliant on 
merely local features its reliability remains suspicious. Such methods ignore long-term 
dependency problems that limit their efficacy in intrusion detection in temporal Edge-
IoT network traffic. With this motivation, in this paper, a contextual deep semantic 
feature-driven multi-type intrusion detection model (CDS-MNIDS) is proposed for 
Edge-IoT networks. The proposed CDS-MNIDS model at first performs network traffic 
segmentation from the temporal network traces obtained from the network gateway. 
Subsequently, the node’s dynamic features including the node’s address, packet size, 
transmission behavior, etc., are processed for Word2Vec encoding, followed by a 
cascaded deep network-based learning and prediction. The CDS-MNIDS model 
embodied a cascaded deep network encompassing LSTM and bidirectional LSTM 
networks, where the first extracted local features. At the same time, the latter obtained 
contextual features from the input local feature vector. The extracted local and 
contextual features were projected to the global average pooling layer followed by the 
fully connected layer that in conjunction with the Softmax layer performed multi-class 
classification.  
The simulation results demonstrated a multi-type intrusion detection accuracy of 
99.81%, with a precision of 98.81%, a recall of 98.48%, and an F-measure of 0.985. 
These values are superior compared to those of other existing intrusion 
detection models. 
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1.Introduction 
In the last few years, the wireless 
communication networks, advanced software 
computing techniques, interoperable distributed 
computing infrastructures have gained 
widespread attention to serve scalable and time-
efficient monitoring and control services. The 
proliferation of inexpensive hardware sensors 
has expanded the scope of the aforementioned 
technologies to encompass a wide range of 
applications in e-Healthcare, industrial 
monitoring and control, surveillance systems, 
smart factory operations, defense, and 
commercial communication systems (Jiang et 
al., 2020b). To cope up such application 
environments, the aforesaid technologies have 
evolved decisively where the advanced 
technologies such as the internet-of-things (IoT), 
machine-to-machine (M2M) communication 
systems, edge-computing etc. have gained 
widespread attention. The other technological 
evolutions such as the mobile-wireless sensor 
networks (MWSN), mobile ad-hoc networks 
(MANET), vehicular ad-hoc networks (VANET) 
(Li et al., 2022). too have gained decisive 
attention across industries globally. The high-
pace up-surging significances have motivated 
industries and civic management bodies to 
exploit aforesaid communication networks to 
serve scalable real-time services. Edge-based 
IoT systems, where sensor nodes or edge nodes 
are installed to gather data and interact with the 
network analyzer or control nodes, can be 
dynamic, making identifying abnormalities or 
attack circumstances problematic (Farivar et al., 
2020). The dynamic nature of such nodes often 
broadens the horizon for intruders to gain 
network access either by mimicking a genuine or 
authenticated node or by intruding network 
infrastructure due to poorly coupled security 
framework (Liao et al., 2020, Vinayakumar et al., 
2020). Being decentralized and infrastructure-
less network characteristics the likelihood of 
intrusion can’t be ruled out, especially under 
uncertain network conditions, dynamic channels 
and aforesaid intrusion cases. To alleviate it, 
applying network intrusion detection systems 
seems to be an inevitable requirement. To cope 

up such demands, in the past a large number of 
efforts have been made where the authors have 
applied node parameters or its dynamic behavior 
such as packet delivery rate (PDR), link-loss, 
delay etc. to perform intrusion detection. For 
instance, the denial of service (DoS) and reply 
attacks are identified by means of assessing a 
node’s timeliness in response, while 
eavesdropping is quantified due to the iterative 
retransmission demands. Thus, applying such 
node behaviors the nodes are classified as 
normal or abnormal. Additionally, the nodes 
static characteristics such as node ID, 
destination ID, packet size, packet length, 
topology too are applied to perform intrusion 
detection (Huang et al., 2020). However, almost 
major state-of-arts have exploited aforesaid 
node parameters to detect standalone kind of 
intrusion or network attack detection. It signifies 
that a network intrusion detection model 
designed based on delay information can merely 
be employed to detect DoS or replay attacks (Liu 
et al., 2020, Chen et al., 2019). The same can’t 
be suitable to decide other attack types and 
therefore, a typical Edge-based IoT network 
which employs both dynamic network 
characteristics as well as a large number of 
interconnected cooperative or autonomous 
nodes for communication might demand multiple 
network security models to ensure network 
security and attack-resilience. Intrusion 
Detection Systems (IDS) act as vigilant 
guardians in the intricate realm of network 
security. These systems aim to identify and react 
to suspicious network traffic that suggests 
malicious activities. Experts have categorized 
IDS systems into two types: signature-based and 
anomaly-based. Yet, these tools have grown to 
tackle the tricky problems that come with today's 
network setups, including the Internet of Things 
(IoT) (Chen et al., 2019). Systems that use 
signatures rely on known patterns of attacks 
we've seen before, while those that look for 
anomalies spot oddities compared to what's 
seen. When it comes to the Internet of Things 
(IoT), with its mix of different gadgets and 
network layouts, many think it's key to use a 
blended approach. This method takes the best 



 

 
134 

   Hassen & Abdlrazaq                                                                                                                                                ZJPAS (2024), 36(6);132-147       

 

ZANCO Journal of Pure and Applied Sciences 2024 

 

parts of both ways of thinking to deal with and 
lower risks. 
 In real-world Edge-IoT networks a 
network might undergo different kinds of attack 
conditions, where the behavioral pattern or 
characteristics of a node (say, attacker node) 
might vary from another(S. Liu, 2020). In this 
case, merely applying single attack-specific 
feature towards scalable and multi-type attack 
detection can yield false positive or false 
negative performance (Chen et al., 2019). For 
instance, unlike blackhole attacks, the wormhole 
attack causes tunnelling of the data packets 
between two target locations by applying in-band 
as well as out-band channels. In this attack 
condition, two or multiple intruders create peer-
tunnel architecture to bypass the target data. It 
often results into data-losses and complete 
transmission failure between intended source-
destination node pair(s). Similar to the blackhole 
attack condition, in gray hole attack case the 
intruder can drop the packets randomly or with 
certain probability (Chen et al., 2019, Butun et 
al., 2020). Here, the attacker node can drop 
packets from a specific node while it can forward 
the packet to the other irrelevant node, thus 
disrupts entire communication network. Its ability 
to drop traffic specific packets like dropping all 
transmission control protocol (TCP) packets 
while transmitting user datagram protocol (UDP) 
packets degrades overall network reliability and 
performance(Huang et al., 2020, Liu et al., 2020) 
(Chen et al., 2019). In a sinkhole attack, a 
malicious (sinkhole) node advertises a best 
possible route to the BS which misguides its 
neighbors in order to use that route more 
frequently. The malicious node thus gets an 
opportunity to tamper with the data, damage the 
regular network operations or conduct other 
serious threats. Misdirection attack too routes 
the packets from its neighbors to other distant 
nodes, but not necessarily to its legitimate 
destination nodes. This produces a long delay in 
packet delivery and decreases throughput of the 
network (Butun et al., 2020, Khan et al., 2019, 
Elbahadır and Erdem, 2021). Unlike above 
stated attack conditions, in hello-flood attack a 
malicious node captures a sensor node and 

broadcasts hello massages, and declares itself 
as a neighbor node. Subsequently, it causes 
packet loss and hence perform 
degradation(Butun et al., 2020). The use of 
delay information is applied towards DoS 
attacks, while packet loss or packet delivery rate 
information is used to detect flooding 
attack(Chen et al., 2019, Butun et al., 2020). It 
signifies that in majority of the existing 
researches authors have employed different 
network parameters to detect the different attack 
type(Khan et al., 2019). In such undeniable 
network conditions, applying multiple parallel or 
sequential network intrusion detection systems 
within aforesaid Edge-IoT networks can cause 
significant resource exhaustion and therefore 
can limit the scalability and longevity of the 
network solution. Such classical approaches can 
also impact quality-of-service (QoS) aspects of 
the Edge-IoT networks, thus making it unsuitable 
for real-world communication 
demands(Elbahadır and Erdem, 2021) .  
 The above inferences clear indicate that 
to enable a resource-efficient, computationally 
efficient and reliable Edge-IoT communication 
there is the need of a multi-type intrusion 
detection framework, which could be able to 
detect the different attacks or intrusion without 
employing separate intrusion detection solutions. 
To meet QoS demands and allied multi-type 
intrusion detection, training a machine learning 
or artificial intelligence (AI) tool over the network 
behavior information can be of great 
significance. In this reference, in the past a 
number of efforts were made by learning node’s 
behavior to perform intrusion detection. The 
classical approaches such as the convolutional 
neural networks (CNN) deep learning methods 
or long and short-term memory (LSTM) is A type 
of RNN for processing sequential data and 
methods were applied extensively to perform 
network intrusion detection; however, such 
methods are often criticized because of their 
inability to address long-term dependency, 
severe gradient vanishing and lack of contextual 
details to achieve reliable prediction. To address 
such issues developing a robust deep driven 
approach employing both local as well as 
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contextual details derived from the network 
dynamic information such as node identity 
information, medium access control (MAC) 
parameters, link-layer information, etc. can be of 
paramount significance. In other words, 
designing a robust deep learning framework 
which could exploit both local as well as global 
(say, contextual) features obtained from the 
nodes behavior can make learning more efficient 
to make reliable intrusion detection decision. 
Additionally, training a robust deep network with 
the node behavior or patterns representing the 
different attack types too can enable a cost-
effective and scalable multi-type intrusion 
detection and classification system. 
Unfortunately, very few efforts have been made 
towards Ai-based multi-type intrusion detection 
in Edge-IoT network. Moreover, those efforts 
made towards network intrusion detection 
systems, especially by using deep learning 
networks have ignored aforesaid long-term 
dependency problems, lack of contextual details 
etc. that confine their suitability to meet real-
world network demands. To alleviate such 
problems, there is the need of a robust deep 
network which could guarantee multi-type 
intrusion detection by addressing aforesaid 
computing challenges or limitations (i.e., long-
term dependency problems, lack of contextual 
details, etc.). It can be considered as the key 
driving force behind this research.  
  The research is situated within the rapidly 
evolving landscape of IoT networks, 
characterized by the convergence of wireless 
communication, advanced computing, and low-
cost sensors. This confluence of technologies 
has enabled a wide array of applications across 
diverse sectors, including healthcare, industry, 
surveillance, and defense. However, the 
decentralized and dynamic nature of IoT 
networks, coupled with the increasing 
sophistication of cyber threats, has necessitated 
robust security measures. The research focuses 
on the development of an intrusion detection 
system (IDS) specifically tailored for Edge-IoT 
environments. The primary objective is to 
address the limitations of existing IDS solutions 
in detecting multiple types of attacks 

simultaneously and efficiently. 
 In sync with aforesaid research gaps and 
allied motivations, This study presents the 
development of a new effective CDS-MNIDS for 
Edge-IoT networks, addressing the research 
gaps and reasons mentioned before. The CDS-
MNIDS security framework was designed in 
such manner that it extracts and trains over 
sufficiently large semantic features obtained 
from the temporal network logs to detect and 
predict multiple types attack conditions. It 
targeted to address at hand challenge of 
gradient vanishing and long-term dependency, 
which is quite often ignored by major at hand 
network intrusion detection systems. In this 
reference, this paper proposes cascaded 
recurrent deep network which could exploit both 
local as well as contextual (global) features from 
the network traffic data to perform multi-type 
intrusion detection.  
 The other sections of this paper are 
divided as follows. Section II discusses the 
related work, while the research questions are 
given in Section III. The overall proposed model 
and its implementation followed by conclusion 
are given in Section IV and Section V, 
respectively. The references used are given at 
the end of the manuscript.   

2.Related Work 

 This section discusses some of the recent 
AI driven intrusion detection systems, where 
machine learning and deep learning methods 
are applied to detect intrusion of the specific 
type(s).   
 (Umamaheshwari et al., 2021)applied 
support vector machine (SVM) algorithm that 
exhibited an accuracy of over 99% with NSL-
KDD network dataset. To improve time and 
learning efficiency, (Wang et al., 2017) applied 
principal component analysis (PCA) and genetic 
algorithm (GA) heuristic methods to retain most 
decisive features, which were later learnt by 
using SVM to perform intrusion detection. Yet, it 
achieved the highest accuracy of 96%. (Kuang 
et al., 2014) amalgamated particle swarm 
optimization (PSO) heuristic with SVM classifier 
towards intrusion detection. The simulation over 
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KDD99 dataset resulted the highest accuracy of 
92.90%, putting question on its efficacy 
(Umamaheshwari et al., 2021, Wang et al., 
2017). (Aburomman and Ibne Reaz, 2016) 
proposed hypergraph-based GA (HG-GA) to 
select most representative samples, while was 
later applied for SVM-based classification. This 
method exhibited the intrusion detection 
accuracy of 97.14% with NSL-KDD dataset. 
(Gauthama Raman et al., 2017) applied decision 
tree and SVM algorithms over KDD-CUP99 
dataset where the highest accuracy of 89.02% 
was yielded by the SVM classifier. (Teng et al., 
2018) applied random forest ensemble classifier 
on NSL-KDD dataset that exhibited the highest 
accuracy of 99.6%. (Farnaaz and Jabbar, 2016) 
on the other hand got 98.3% prediction accuracy 
with KDD99 dataset with the RF ensemble that 
put question on the generalizability of the 
previous RF-based works. (Elbasiony et al., 
2013) developed an optimal allocation based 
least square SVM (OA-LS-SVM) method for 
network intrusion detection. (Kabir et al., 2018) 
applied k-NN classifier, which could achieve the 
highest intrusion prediction accuracy of 94%. (Li 
et al., 2018) applied Naïve Bayes (NB), SVM 
and RF algorithms for DoS intrusion detection in 
wireless sensor network. (Abdullah et al., 2018) 
applied neural network Bayesian Net-GR 
algorithm where the Gain Ratio (GR) was 
applied to perform feature selection followed by 
intrusion detection decisions. (KumarShrivas and 
Kumar Dewangan, 2014) applied self-taught 
learning (STL) based on deep network to 
perform intrusion detection. They applied CNN to 
perform feature extraction, which was applied by 
STL to perform feature selection followed by 
SVM for two-class classification. In (Al-Qatf et 
al., 2018) and (Lee et al., 2013), PCA and linear 
discriminant analysis (LDA) feature selection 
methods were applied that in conjunction with 
the Ant Lion optimization heuristic yielded 
sufficiently large feature vector for NN-based 
DDoS prediction. (Jaber et al., 2018) employed 
k-NN assisted clustering followed by the extreme 
learning machine (ELM) method to perform 
intrusion detection. (Latah and Toker, 2020) 
used NB and AdaBoost methods for network 

intrusion detection, where AdaBoost resulted 
intrusion prediction accuracy of almost 92%. 
Despite exhaustive approach where (Wahba et 
al., 2015) designed an ensemble learning 
method embodying DT, RF, k-NN and deep NN 
as base classifier to perform intrusion detection 
in NSL-KDD dataset. The simulation results 
confirmed superiority of the ensemble learning 
method that exhibited accuracy of 85.2%, which 
was higher than the DT classifier (accuracy 
84.2%). Neural network methods were applied in 
(Gao et al., 2019, Beghdad, 2008, Song et al., 
2006, Tran et al., 2012, Abuadlla et al., 2014) as 
well; yet, these methods yielded low prediction 
accuracy. A few clustering based approaches 
like the optimum-path forest clustering (Jadidi et 
al., 2013), sub-space and density-based 
clustering methods (Lakhina et al., 2005) were 
proposed towards network intrusion detection. 
Yet, these methods underwent reduced intrusion 
prediction accuracy and lack of generalizability 
over uncertain attack types. (Casas et al., 2011) 
applied a total of 39 network parameters which 
were trained over the RF ensemble algorithm to 
perform network intrusion detection. Yet, the 
accuracy of 90% puts question on its 
generalizability (Stevanovic and Pedersen, 
2014). Despite their claim to have higher 
intrusion detection accuracy with the ELM 
algorithms; the limitations to have single-type 
intrusion detection limit their scalability. Marir et 
al. (Ahmad et al., 2018) used convolutional 
neural network for feature extraction followed by 
SVM learning for intrusion prediction. (Marir et 
al., 2018) used auto-encoder feature leaning 
with neural network for network intrusion 
detection. (Mirsky et al., 2018) applied a 
conditional variational autoencoder (CVAE) with 
LSTM recurrent neural networks (LSTMRNNs) 
for network intrusion detection (Lopez-Martin et 
al., 2017). Yet, they failed to address the issues 
of long-term dependency, gradient vanishing and 
lack of contextual information that can have 
decisive impact on the prediction accuracy. 
(Jiang et al., 2020a) applied semantic features 
for transfer-learning-based intrusion detection. 
While semantic features offer significant 
advantages for transfer-learning-based intrusion 
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detection systems, careful consideration must be 
given to their implementation and potential 
drawbacks. Balancing these strengths and 
weaknesses is crucial for developing effective 
and reliable intrusion detection mechanisms.  

3.Research Questions  

 In sync with the overall research intends 
and allied scopes, this paper formulates certain 
questions whose justifiable answers put 
foundation for a robust and efficient multi-type 
network intrusion detection system for Edge-IoT 
systems. These questions are: 
RQ1 The amalgamation of static and dynamic 

network pattern-driven semantic features 
with a cascaded LSTM Bi-LSTM , an LSTM 
that processes data in both forward and 
backward directions  network can effectively 
enhance multi-type network intrusion 
detection in Edge-IoT environments, as can 
the strategic integration of static and 
dynamic node behavior information. 

 
RQ2: Can the use of Word2Vec semantic 

features obtained from the nodes’ behaviour 
pattern enable better feature extraction and 
learning to yield accurate and reliable 
intrusion detection system for Edge-IoT 
systems? 

RQ3: Can the use of cascaded recurrent neural 
networks be encompassing LSTM and Bi-
LSTM deep networks in conjunction with 
global average pooling layer and fully 
connected layer yield reliable multi-type 
network intrusion detection and classification 
for scalable Edge-IoT network security? 

 
 Thus, this research aims to achieve 
justifiable answers for these questions that 
eventually can put foundation for a robust Edge-
IoT network security solution.  

4.System Model 

 The overall proposed model encompasses 
the following sequential steps: 

1. Network Data Acquisition and Pre-
processing  

2. Static-o-Dynamic (Traffic) Parameter 
Segmentation 

3. Word2Vec Semantic Feature Mapping 
4. Cascaded Deep Network for Feature 

Extraction and Learning, and  
5. Performance Characterization.  

 The subsequent sections offer a 
comprehensive discussion of the proposed 
model in (Fig. 1). 
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Fig. 1: Proposed Method 
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The sequential implementation detail is given as 
follows:  
A. Network Data Acquisition and Pre-

Processing  
 To achieve our research goal of detecting 
various types of intrusions or network attacks, we 
collected IoT network traces from numerous 
nodes operating both autonomously and 
collaboratively. More specifically, in this work, a 
benchmark dataset embodying inter IoT (edge) 
node communication patterns over a large 
number of deployed sensors was obtained. We 
collected the IoT communication data traffic from 
the University of New South Walles (UNSW), 
which is normally known as UNSW NB15 
dataset. Recalling the fact that the proposed 
research focuses on designing a robust multi-
type intrusion detection solution, UNSW NB15 
dataset was considered as it embodies intrusion 
traces pertaining to the wormhole attacks, DoS 
attack, Fuzzers etc. The dataset exhibits 
significant class imbalance, with normal records 
constituting about 87% of the total data. In 
contrast, the combined attack classes make up 
only 13%, leading to challenges in training 
models that can accurately detect less frequent 
attacks. This imbalance can increase the false 
positive rate and decrease detection accuracy for 
underrepresented classes. 
In UNSW data preparation, the cyber security 
experts representing the Australian Centre for 
Cyber Security (ACCS) were involved who 
deployed the network and allied data generation 
model at the University of New South Wales 
(Australia) in 2015, where executing the traffic 
and allied sensor communication over 1000s of 
hours, the final network traces were obtained. In 
the considered data environment, there are a 
large number of sensor nodes (say, IoT sensors 
or edge nodes) deployed across the network 
area. The UNSW-NB15 dataset houses the 
communication traffic between these nodes 
where the gateway node monitors inter-node 
communication and creates log for further 
analysis. In sync with the demand of a scalable 
network condition for deep learning methods, 
over both normal as well as intrusion 
transmission or traffic cases, the UNSW NB15 
dataset applied multiple servers where the traffic 

injection tool was applied to injects traffic 
instances amongst the different sensor nodes. In 
addition to the simulated data traffic, this specific 
dataset has applied IXIA Perfect Storm tool that 
generates sufficient traffic with both normal as 
well as intrusion cases (say, traffic) for further 
intrusion detection and classification. Let, 𝑁1, 𝑁2 

and 𝑁𝑛and 𝑁𝑎, 𝑁𝑏 and 𝑁𝑛 be the edge devices or 
sensors deployed across the network, while 𝑆1, 
𝑆2  and 𝑆𝑛  be the servers generating network 
traffic amongst aforesaid devices or nodes. The 
inter-node communication traces are 
subsequently processed by 𝑇𝐶𝑃𝐷𝑢𝑚𝑝  tool that 
enables node’s specific pattern segmentation. It 
also enables traffic segmentation and allied 
feature identification, which is later used to 
perform learning-based (network intrusion) 
prediction. In this work, the 𝑇𝐶𝑃𝐷𝑢𝑚𝑝  tool was 

applied to collect device’s address (𝐼𝑃_𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 
MAC Addresses, source and destination 
addresses etc.), transmission 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙  used, 
type of the data, data size, transmission period 
(delay information), packet received information, 
packet size etc.  
 A sippet of the dataset considered in this 
work and allied statistical details is given in Table 
I. The overall considered dataset embodies 
network traffics representing normal traffics as 
well as six different kinds of intrusion pattern or 
traffic instance. The use of two distinct servers in 
conjunction with the IXIA traffic generation tools 
provided sufficiently large data traces to improve 
learning and prediction accuracy. It also helped 
to annotate traffic types, which made deep 
learning easier to achieve higher accuracy. The 
total dataset considered had the network 
transaction traces counting 2 million. The overall 
data was split into two parts; training and testing 
data, where we considered 60% data for training 
while remaining 40% was applied for testing. As 
stated earlier, we considered seven different 
kinds of data cases including six intrusion 
patterns and one normal traffic traces. The 
considered dataset embodied normal traces, 
Fuzzers, DoS attacks, Wormhole attacks, Shell-
code attacks, and Reconnaissance attacks. In 
real world scenario there can be the probability 
that a sensor can keep transmitting traffic with no 
events and even certain sensors or edge devices 
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can transmit rarely to update interval-based 
assessment. Such conditions can give rise to the 
data imbalance and therefore, we performed 
network segmentation which helped to identify 
the active period detail about each and every 
deployed (active) node. In this reference, the 
node specific details such as the node addresses 
(i.e., transmitter and receiver 𝐼𝑃_𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ), 
transmission protocol, data traffic type, data 
length, transmission period (i.e., delay), packet 
received information, packet size etc. were 
obtained. 
 

Table I: UNSW-NB15 dataset  
Class Description Training Testing 

Normal 
Normal connection 
records 

56000 37000 

Fuzzers 

Attacks related to 
spams, HTML files 
penetrations, and 
spam and port scams 

18184 6062 

DoS 

Intruder intends to 
deplete the resources 
and make network 
down, thereby making 
entire system and 
resource inaccessible   

12264 4089 

Generic  
Attacks are related to 
the block-cipher  

14000 18871 

Reconnaissance  

A target system is 
observed by an 
attacker to gather 
information for 
vulnerability  

10491 3496 

Shell code 

It is a small part of 
program learned as 
payload used in 
exploitation of a 
software  

1133 378 

Worms 

They replicate 
themselves and get 
distributed across the 
system to get access 
to the resources as 
well as operating 
computer network(s).    

130 44 

 
 

B. Static-o-Dynamic (Traffic) Parameter 
Segmentation 

 In the targeted Edge-IoT networks there 
can be a large number of resource constrained 
edge devices or IoT devices interfaced through 
the wireless transmission channels. Once 

transmission initiates the connected nodes or 
edge devices start transmitting the real-time data, 
and continues transmitting data traces depicting 
node information, data type, traffic size, frame 
size, delay information, device types, source and 
destination ID, roles, configuration with gateway 
or collaborated nodes, service types etc. In real-
world transmission, the edge devices can 
perform peer-communication directly or via 
gateway or server node(s). On the other hand, 
the different edge devices or IoT sensors can 
use the different routing protocol; though, the 
major at hand solutions apply TCP/IP protocols 
to achieve transmission. Thus, the complete 
network traffic can be defined as a time-series 
data possessing the different features or 
transmission patterns for the different nodes or 
peer nodes.  In this case, identifying node 
specific static and behavioral patterns over the 
aforesaid time-series data is must. On the other 
hand, in real-world application there can be the 
case where a node can keep transmitting 
continuously with normal traces, while certain 
sensor or node might transit quite rarely over 
certain event trigger. Such data condition can 
give rise to the class-imbalance and hence 
training any machine learning or deep learning 
models over such imbalanced traces can yield 
false positive or false negative performance. To 
alleviate such issues, training a model over 
active period and event-sensitive pattern is must. 
To achieve it, in this paper TCP Dump, a tool for 
capturing and analyzing network packets for 
traffic insights was applied to segment node 
specific features over corresponding time-series 
transmission traces. In order to segment the 
different traffic patterns over non-linear 
transmission scenario, 𝑇𝐶𝑃𝐷𝑢𝑚𝑝  tool was 
applied that extracted traffic traces to yield 
corresponding static features or allied dynamic 
network behavior. In this work, the use of TCP 
dump tool provided transmission records 
encompassing the information within the packet 
(from the MAC to the application layer of the 
WSN’s IEEE 802.15.4 standard’s open system 
interconnection). In reference to the real-time 
operating standards and the security protocols 
like Secure Sockets Layer (SSL), Transport 
Layer Security (TLS) and the privacy protection 
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policies by the different government agencies or 
lawmakers, only the packet header’s information 
can be used for intrusion detection and 
classification. Nevertheless, the accessible 
information including the Source ID, the 
Destination ID, the Protocol used, medium 
access control (MAC) address, Packet size (i.e., 
the size of the transmitted data and the received 
data), delay information (i.e., the transmission 
period) etc. can be employed to classify the 
network traffic as the normal traffic or the 
malicious or intrusion traffic. It can further be 
used to detect the intruder node in the network. 
Noticeably, these details were obtained for each 
network traces (i.e., transmission records 
between the peer nodes) and thus the overall 
data comprised both normal as well as other six 
different kinds of intrusion cases, which were 
later used to train the model for multi-type 
intrusion prediction.  
 Unlike traditional intrusion detection 
systems, where the input patterns are directly 
mapped as input to the machine learning models 
for prediction, in the proposed model the input 
features (say, segmented network features) were 
processed for semantic feature extraction so as 
to retain more latent information about the 
network traces to perform multi-type intrusion 
prediction under uncertain transmission 
conditions. It seems to be more effective towards 
multi-type intrusion detection, where excessive 
transmission heterogeneity and non-linearity 
can’t be ruled out. In this paper, we applied 
simple Word2Vec word embedding method that 
transformed input node features into the 
corresponding embedding matrix, which was 
later projected as input to the proposed 
cascaded deep network for learning and 
prediction. A brief of the Word2Vec model used 
is given as follows.  
C. Word2Vec Semantic Feature Mapping 
 In this work, Word2Vec semantic feature 
extraction method also called as word-
embedding was applied. More specifically, we 
applied Gensim Word2Vec method to transform 
input node features (sometime called tokens) into 
corresponding embedding matrix. In this work, 
the deployed Gensim Word2Vec model 
encompassed dual-layer neuro-computing 

mechanism embodying two hidden layers. This 
approach helped to yield more sparser features 
that consequently can help to reduce 
computational costs and hence can enhance 
overall resource efficiency and delay aspects of 
the Edge-IoT network. Thus, retrieving 
embedding output from each node and allied 
transmission traces or features, an embedding 
vector was obtained, which was mapped as input 
to the proposed cascaded deep network.  
D. Cascaded Deep Network for Feature 

Extraction and Learning  
 In the past numerous efforts were made 
where the authors applied CNN or the RNN 
methods such as LSTM to perform feature 
extraction from the time-series data; however, 
almost major state-of-arts failed to address long-
term dependency problem which can impact 
eventual learning and prediction output(s). A few 
approaches, especially applying CNN with the 
higher number of convolutional layers 
hypothesized to have achieved high-dimensional 
features; however, the likelihood of gradient 
vanishing over increasing convolutional layers 
can’t be ruled out. Considering such inferences, 
for a robust multi-type intrusion detection system 
exploiting both local as well as contextual details 
was must, even ensuring alleviation towards 
gradient vanishing. In this reference, we 
designed a cascaded deep model encompassing 
LSTM and Bi-LSTM, where the first extracts the 
local features, while the later obtains the 
contextual features from the time-series data. 
Being cascade in design (Fig. 1), the output of 
the LSTM deep network is passed as input to the 
Bi-LSTM and eventually the output features from 
both (LSTM and Bi-LSTM) are mapped to the 
global average pooling (GAP) to yield composite 
hybrid deep feature. The obtained composite 
feature is projected to the fully connected layer 
that acts as a classification layer. In this work, 
Softmax classifier was applied with the cross-
entropy cost function to perform multi-class 
classification and thus each network trace is 
classified for its types (i.e., normal, Fuzzers, DoS 
attacks, Wormhole attacks, Shell-code attacks, 
and Reconnaissance attacks). A brief of the deep 
network applied in this work is given as follows:  
 As depicted in Fig. 1, the proposed 
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cascaded deep network at first applies LSTM 
deep network. Noticeably, the key purpose of 
LSTM deep network development was to 
address the problem of vanishing effect and 
exploding gradient that improves efficacy of 
RNNs towards time-series data analysis and 
predictions [14]. The basic concept behind LSTM 
deep network is to control the cell-states by 
applying gates like input gate, forget gate and 
output gates. A typical functional design of an 
LSTM model is given in Fig. 2.  

 

Fig. 2. A typical functional design of an LSTM 
model 
The LSTM networks employ memory cells with 
gates for long-term dependencies to avoid 
vanishing gradient problems. A Bi-LSTM treats 
the sequence in both directions to enrich the 
context. LSTMs remember temporal information, 
making it quite suitable for data that is 
sequential. Bi-LSTMs incorporate past and future 
states into a contextual model and are therefore 
more sensitive, enhancing the model's 
robustness. Both architectures increase the 
accuracy of detection. Among these, Bi-LSTM 
yields finer contextual insight-which is necessary 
for the recognition of difficult temporal patterns. 
In LSTM deep network, the forget gate ( 𝑓𝑡 ) 
examines whether it requires storing the previous 
state’s information (𝑐𝑡−1) or forget it by applying 
the input (𝑥𝑡) and the hidden state (ℎ𝑡−1). The 
output of this gate can yield either 0 or 1. 
Similarly, the input gate (𝑖𝑡) measures the level 

of information related to the input text (𝑥𝑡) and 
the hidden layer (ℎ𝑡−1) to be passed to update its 
cell-state for result generation (i.e., either as 0 or 
1). The parameter 𝑐𝑡 signifies the measured cell 
state by using mathematical functions on 𝑐𝑡−1, 𝑓𝑡 

and 𝑖𝑡 . The information flow in between the 
current cell state to the hidden state is often 
controlled by means of the output gate (𝑂𝑡) that 
usually exists as 0 or 1. Consider that at certain 
time 𝑡 , the input data be 𝑥𝑡  and its previous 
hidden state and cell state values be ℎ𝑡−1  and 
𝑐𝑡−1, respectively. In the same manner, consider 
that the current output of the hidden state and 
the current cell state be ℎ𝑡  and 𝑐𝑡 , 
correspondingly. Thus, the different gate 
elements  

 
and their outputs are derived by using (1-5).  

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (1) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (2) 

𝑐𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑡 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) (3) 

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏0) (4) 

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (5) 

 
Fig. 2 forget gate (𝑓𝑡) output 

  

 

 

In above equations (1-5), 𝑥𝑡 ∈ 𝑅𝑛  signifies the 
input vector, 𝑊 ∈ 𝑅𝑣∗𝑛, 𝑏 ∈ 𝑅𝑣, where 𝑛 and 𝑣 be 
the dimensions of the input vector and the 
number of words in the input data corpus, 
correspondingly. The selection of LSTM and Bi-
LSTM networks for intrusion detection is well-
founded due to their sophisticated architectural 
design, numerous benefits, and proven impact 
on enhancing detection accuracy. These models 
offer a powerful approach to understanding 
complex sequential data, making them ideal for 
identifying and mitigating network threats 
effectively. In this research work we are not 
considering transformers. 

5.Results and Discussion 

 In this paper a novel and robust contextual 
deep semantic feature driven multi-type intrusion 
detection model (CDS-MNIDS) was proposed for 
Edge-IoT systems. The ability to extract event 
specific semantic features encompassing both 
local as well as contextual details make the 
proposed CDS-MNIDS model robust towards 
multi-type intrusion detection in Edge-IoT 
networks. In function, we considered UNSW 
NB15 dataset that comprises network traffic 
traces or transmission traces over a large 
number of autonomously operating IoT sensor 
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nodes. More specifically, in this work the 
transmission traces pertaining to the normal 
traffic, Fuzzers, DoS attacks, Wormhole attacks, 
Shell-code attacks, and Reconnaissance attacks 
were taken into consideration. The overall 
dataset was at first processed for network 
segmentation by using TCP Dump tool that 
obtained node specific features including node ID 
(source ID, destination ID), protocol used, data 
size, frame size, and delay. The proposed CDS-
MNIDS intrusion detection model performed 
semantic embedding over the segmented node’s 
features. More specifically, we applied Word2Vec 
embedding, a technique for representing words 
as numerical vectors and method by using 
Gensim method that transformed each node’s 
features into equivalent embedded matrix. The 
extracted embedding matrix was passed as input 
to the proposed cascaded RNN encompassing 
LSTM and Bi-LSTM in sequence. The proposed 
model at first applied LSTM deep network to 
extract local feature from the embedding 
(feature) matrix, whose output was then passed 
to the Bi-LSTM to generate contextual details. 
Thus, extracted LSTM and Bi-LSTM features 
were mapped as input to the GAP layer that then 
generates a composite feature vector and feeds 
as input to the fully connected layer. The 
obtained features were processed for learning 
and prediction by using Softmax layer that in 
conjunction with cross-entropy cost function 
performs multi-class classification. To improve 
learning efficacy ADAM non-linear optimization 
function was applied, where the initial learning 
rate was assigned as 0.0001. Thus, the 
proposed model performed multi-class 
classification over the input feature vector and 
annotated each node trace as normal or attack 
classes (Fuzzers, DoS attacks, Wormhole 
attacks, Shell-code attacks, and Reconnaissance 
attacks). The proposed cascaded deep network 
annotated each node with respective type and 
respective confusion matrix was obtained.  
 The overall proposed model was 
developed by using MATLAB 2020b software 
tool. The proposed model was simulated over the 
central processing unit armored with the 
Microsoft Window operating systems, 8 GB 
memory and 3.2 GHz processor. The system 

configuration also embodied Intel i5 processor 
operating at 3.2 GHz frequency. The simulation 
results were obtained in terms of accuracy, 
precision, recall, F-Measure, time parameters. 
Noticeably, to achieve aforesaid statistical 
performance parameters, confusion matrix was 
obtained in terms of the true positive (TP), false 
positive (FP), true negative (TN) and false 
negative (FN). Here, the true positive (TP) values 
signified the instances moved correctly to the 
corresponding (correct) cluster. Moreover, false 
positive (FP) outputs indicate that the instance is 
moved to the wrong cluster, but labelled as 
correct. The mathematical formulations used to 
derive the different performance parameters are 
given in Table II.  
Table II: Performance Parameters 

Parameter Mathematical Expression 

Accuracy 
(𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Precision 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F-Score 2.
𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 To assess robustness of the proposed 
CDS-MNIDS intrusion detection model, the 
performance characterization was done in terms 
of intra-model assessment and inter-model 
assessment. The detailed discussion of the 
simulated results and allied inferences is given in 
the subsequent sections.  
A. Intra-Model Assessment 
 Since, in this work we hypothesized that 
the strategic use of LSTM and Bi-LSTM deep 
features be effective towards multi-type intrusion 
detection, we compared performance with LSTM 
features, Bi-LSTM features and fused LSTM and 
Bi-LSTM features. Here, the key motive was to 
assess relative efficacy of the different feature 
models. The simulated results are given in Table 
III. 
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Table III: Performance with the different feature 
model  

Feature 
Model 

Performance (%) 

A
c
c
u

ra
c
y
 

P
re

c
is

io
n
 

R
e

c
a

ll 

F
-M

e
a

s
u

re
 

LSTM 96.68 97.84 97.03 97.43 

Bi-LSTM 98.03 98.39 96.94 97.7 

LSTM + Bi-
LSTM 

99.81 98.81 98.48 98.5 

 As depicted in Table III, we can observe 
that the use of LSTM deep network exhibits the 
intrusion detection accuracy of 96.68%. On the 
contrary, the use of Bi-LSTM feature resulted the 
intrusion prediction accuracy of 98.03%. 
Interestingly, the amalgamation of LSTM and Bi-
LSTM deep features (say, cascade deep 
features) resulted the intrusion detection and 
prediction accuracy of 99.81%. The detailed 
assessment also indicates that the proposed 
hybrid (LSTM + Bi-LSTM) feature driven model 
achieves precision, recall and F-Measure of 
98.81%, 98.48% and 98.5%. The overall results 
indicate that the proposed cascaded feature 
driven intrusion detection model exhibit superior, 
thus confirming superiority and suitability towards 
real-world multi-type intrusion detection solution 
for edge-IoT networks. The graphical depiction of 
the simulation results obtained are given in Fig. 3 
to Fig. 6. 

 

Fig. 3 Accuracy over the different feature 
models. 
 To assess whether the use of Word2Vec 
embedding model achieved superior efficacy 
over the normal pattern (i.e., without embedding) 

feature-based solution, we simulated the 
proposed model with and without embedding 
matrix. In other words, in addition to the 
proposed model where the Word2Vec embedded 
matrix was passed as input to the proposed 
cascaded deep network, we simulated by 
passing the original data directly to the proposed 
cascaded deep network. In this reference, the 
simulation results obtained are given in the Table 
IV.  

 

Fig. 4 Precision over the different feature 
models. 

 

Fig. 5 Recall over the different feature models. 

 

Fig. 6 F-Measure over the different feature 
models. 
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Table IV: Performance with the different input 
data nature  

Feature Input 

Performance (%) 

A
c
c
u

ra
c
y
 

P
re

c
is

io
n
 

R
e

c
a

ll 

F
-M

e
a

s
u

re
 

Without 
Embedding 

97.99 96.29 97.21 96.74 

With 
Word2Vec 

99.81 98.81 98.48 98.5 

LSTM + Bi-
LSTM 

    

 

 

Fig. 7 Performance with and without Word2Vec 
embedding inputs 
 As depicted in above results, it can easily 
be found that the use of Word2Vec embedding 
driven method where key parameters include 
(size, window, min-count, and SG) cascaded 
deep network results intrusion prediction 
accuracy of 99.81%, while without embedding it 
results relatively lower prediction accuracy (i.e., 
98%). Similarly, the F-Measure performance 
obtained too signifies the same result where it 
shows (F-Measure) value of 98.5% with 
Word2Vec embedding, while without embedding 
it shows F-Measure of 96.74%. The overall 
results confirm that the use of Word2Vec 
embedding as semantic feature extraction 
approach helps to achieve superior performance 
than without embedding driven feature learning.  
B. Inter-Model assessment 
 To assess whether the proposed CDS-
MNIDS intrusion detection model performs 
superior over the other state-of-arts we 
considered accuracy (%) as common parameter 
and the relative efficiency was measured for the 
different existing methods. In other words, we 

compared the performance with the different 
existing network intrusion systems. The relative 
performance outputs are given in Table V.   
Table V :Relative Performance assessment  

Reference Accuracy (%) 

[13] 96.00 
[14] 92.90 
[15] 97.14 
[16] 89.02 
[17] 99.67 
[18] 98.30 
[20] 94.00 
[28] 85.20 
[43] 99.62 
[44] 83.58 
[45] 99.80 
[46] 97.85 

CDS-MNIDS 99.81 

 Observing the overall results, it can easily 
be found that the proposed model performs 
superior over the other state of arts. Thus, in 
reference to the research questions, as defined 
in Section III, we can confirm that the strategic 
amalgamation of static as well as dynamic node 
behavior information be effective towards multi-
type network intrusion detection in Edge-IoT 
systems. It confirms acceptance of the RQ1. 
Similarly, the research outcomes reveal that the 
use of Word2Vec semantic features obtained 
from the nodes’ behavior pattern enable better 
feature extraction and learning to yield accurate 
and reliable intrusion detection system for Edge-
IoT systems. It is confirmed in reference to the 
results obtained in the Fig. 8, and thus the RQ2 
is found affirmative. The previous results (i.e., 
Table III) confirms that the use of cascaded 
recurrent neural networks be encompassing 
LSTM and Bi-LSTM deep networks in 
conjunction with global average pooling layer and 
fully connected layer yield reliable multi-type 
network intrusion detection and classification for 
scalable Edge-IoT network security, and 
therefore this research gives affirmative output or 
result for the RQ3.  The overall research 
outcomes indicate the affirmative acceptance of 
the RQ1, which states that the amalgamation of 
static and dynamic network pattern driven 
semantic features, and cascaded LSTM Bi-LSTM 
network be effective towards multi-type network 
intrusion detection in Edge-IoT environment. 
LSTM and Bi-LSTM is a solid foundation for 
addressing gradient vanishing issues and 
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improving prediction accuracy. By exploring 
additional strategies such as regularization 
techniques, advanced architectures, 
hyperparameter tuning, data preprocessing, and 
ensemble methods, you can further enhance 
your model's performance. 
6.Conclusion  
 With the high pace rising Edge-computing and 
allied IoT-enabled Edge communication (and 
application) services, guaranteeing reliability has 
become a challenge. Edge-IoT being complex 
and dynamic in nature can undergo network 
vulnerabilities due to the loosely coupled 
connections and man-in-the-middle attacks. 
Though, in the past, the different efforts are 
made towards network intrusion detection; 
however, almost all state-of-arts contributed 
standalone attack detection that doesn’t fulfil the 
demand of a resource constrained Edge-IoT 
networks. Applying multiple intrusion detection 
tools for each attack types such as DoS, DDoS, 
Wormhole attacks, Fuzzers etc. can impose 
significant computational overheads and hence 
resource exhaustion, which can’t be suggested 
for the (resource constrained) Edge-IoT systems. 
To alleviate such challenges, in this paper a 
novel and first of its kind contextual deep 
semantic feature driven multi-type intrusion 
detection model (CDS-MNIDS) was developed 
for Edge-IoT networks. The CDS-MNIDS security 
framework was designed in such manner that it 
extracts and trains over sufficiently large 
semantic features obtained from the temporal 
network logs to detect and predict multiple types 
attack conditions. In addition, it also targeted to 
address at hand challenge of gradient vanishing 
and long-term dependency, which is quite often 
ignored by major at hand network intrusion 
detection systems. In this reference, this 
research proposed cascaded recurrent deep 
network which could exploit both local as well as 
contextual (global) features from the network 
traffic data to perform multi-type intrusion 
detection. Technically, the proposed CDS-
MNIDS model initially makes use of the Edge-IoT 
network traces obtained from the network 
gateway deployed over a large autonomously 
and coupled sensors. This work applied UNSW’s 
IoT intrusion detection dataset, which was at first 

processed for network traffic segmentation, 
especially designed to alleviate any possibility of 
class-imbalance and over-fitting. The proposed 
CDS-MNIDS protocol obtained node’s 
parameters such as node’s address, packet size, 
source-destination information, transmission 
behaviour etc. as the node behaviour parameter 
to train the model for eventual outlier or multi-
type intrusion detection and prediction. The 
segmented node features were then processed 
for Word2Vec embedding that resulted 
latent/semantic features to make learning even 
more efficient over unknown network conditions. 
Unlike traditional token-based feature, the use of 
semantic features strengthened the proposed 
model to achieve better learning and prediction. 
The semantic features obtained from the different 
node’s parameters were fed as input to the 
cascaded RNN network encompassing LSTM 
and Bi-LSTM in sequence. Here, the LSTM 
model obtained local features from the input 
node features, while its output was passed as 
input to the Bi-LSTM for contextual feature 
extraction. Thus, the obtained local and 
contextual or global features were passed to the 
average pooling layer for further learning and 
prediction at the fully connected layer. This work 
applied cross-entropy cost function in conjunction 
with the Softmax layer to perform multi-type 
intrusion prediction. The simulation results 
confirmed multi-type intrusion detection accuracy 
of 98.96%, precision 98.21%, recall 96.87% and 
F-Measure of 0.975, which is higher than other 
intrusion detection models.  

Reference  

 Abdullah, A., Alsolami, B., Alyahya, C. & Alotibi, C. 2018. 
INTRUSION DETECTION OF DOS ATTACKS IN 
WSNS USING CLASSIFICATION TECHNIUQES. 
Journal of Fundamental and Applied Sciences, 10, 
298-303. 

Abuadlla, Y., Kvascev, G., Gajin, S. & Jovanovic, Z. 2014. 
Flow-based anomaly intrusion detection system using 
two neural network stages. Computer Science and 
Information Systems, 11, 601-622. 

Aburomman, A. A. & Ibne Reaz, M. B. 2016. A novel SVM-
kNN-PSO ensemble method for intrusion detection 
system. Applied Soft Computing, 38, 360-372. 

Ahmad, I., Basheri, M., Iqbal, M. J. & Rahim, A. 2018. 
Performance Comparison of Support Vector Machine, 
Random Forest, and Extreme Learning Machine for 
Intrusion Detection. IEEE Access, 6, 33789-33795. 



 

 
146 

   Hassen & Abdlrazaq                                                                                                                                                ZJPAS (2024), 36(6);132-147       

 

ZANCO Journal of Pure and Applied Sciences 2024 

 

Al-Qatf, M., Lasheng, Y., Al-Habib, M. & Al-Sabahi, K. 
2018. Deep Learning Approach Combining Sparse 
Autoencoder With SVM for Network Intrusion 
Detection. IEEE Access, 6, 52843-52856. 

Beghdad, R. 2008. Critical study of neural networks in 
detecting intrusions. Computers & Security, 27, 168-
175. 

Butun, I., Österberg, P. & Song, H. 2020. Security of the 
Internet of Things: Vulnerabilities, Attacks, and 
Countermeasures. IEEE Communications Surveys & 
Tutorials, 22, 616-644. 

Casas, P., Mazel, J. & Owezarski, P. UNADA: 
Unsupervised Network Anomaly Detection Using Sub-
space Outliers Ranking. In: DOMINGO-PASCUAL, J., 
MANZONI, P., PALAZZO, S., PONT, A. & SCOGLIO, 
C., eds. NETWORKING 2011, 2011 Berlin, 
Heidelberg. Springer Berlin Heidelberg, 40-51. 

Chen, H., Meng, C., Shan, Z., Fu, Z. & Bhargava, B. K. 
2019. A Novel Low-Rate Denial of Service Attack 
Detection Approach in ZigBee Wireless Sensor 
Network by Combining Hilbert-Huang Transformation 
and Trust Evaluation. IEEE Access, 7, 32853-32866. 

Elbahadır, H. & Erdem, E. Modeling Intrusion Detection 
System Using Machine Learning Algorithms in 
Wireless Sensor Networks.  2021 6th International 
Conference on Computer Science and Engineering 
(UBMK), 2021. 401-406. 

Elbasiony, R. M., Sallam, E. A., Eltobely, T. E. & Fahmy, 
M. M. 2013. A hybrid network intrusion detection 
framework based on random forests and weighted k-
means. Ain Shams Engineering Journal, 4, 753-762. 

Farivar, F., Haghighi, M. S., Jolfaei, A. & Alazab, M. 2020. 
Artificial Intelligence for Detection, Estimation, and 
Compensation of Malicious Attacks in Nonlinear 
Cyber-Physical Systems and Industrial IoT. IEEE 
Transactions on Industrial Informatics, 16, 2716-2725. 

Farnaaz, N. & Jabbar, M. A. 2016. Random Forest 
Modeling for Network Intrusion Detection System. 
Procedia Computer Science, 89, 213-217. 

Gao, X., Shan, C., Hu, C., Niu, Z. & Liu, Z. 2019. An 
Adaptive Ensemble Machine Learning Model for 
Intrusion Detection. IEEE Access, 7, 82512-82521. 

Gauthama Raman, M. R., Somu, N., Kirthivasan, K., 
Liscano, R. & Shankar Sriram, V. S. 2017. An efficient 
intrusion detection system based on hypergraph - 
Genetic algorithm for parameter optimization and 
feature selection in support vector machine. 
Knowledge-Based Systems, 134, 1-12. 

Huang, H., Ding, S., Zhao, L., Huang, H., Chen, L., Gao, H. 
& Ahmed, S. H. 2020. Real-Time Fault Detection for 
IIoT Facilities Using GBRBM-Based DNN. IEEE 
Internet of Things Journal, 7, 5713-5722. 

Jaber, A. N., Zolkipli, M. F., Shakir, H. A. & Jassim, M. R. 
2018. Host Based Intrusion Detection and Prevention 
Model Against DDoS Attack in Cloud Computing. 

Jadidi, Z., Muthukkumarasamy, V. & Sithirasenan, E. 
Metaheuristic algorithms based Flow Anomaly 
Detector.  2013 19th Asia-Pacific Conference on 

Communications (APCC), 2013/8// 2013. IEEE, 717-
722. 

Jiang, F., Fu, Y., Gupta, B. B., Liang, Y., Rho, S., Lou, F., 
Meng, F. & Tian, Z. 2020a. Deep Learning Based 
Multi-Channel Intelligent Attack Detection for Data 
Security. IEEE Transactions on Sustainable 
Computing, 5, 204-212. 

Jiang, S., Zhao, J. & Xu, X. 2020b. SLGBM: An Intrusion 
Detection Mechanism for Wireless Sensor Networks in 
Smart Environments. IEEE Access, 8, 169548-
169558. 

Kabir, E., Hu, J., Wang, H. & Zhuo, G. 2018. A novel 
statistical technique for intrusion detection systems. 
Future Generation Computer Systems, 79, 303-318. 

Khan, T., Singh, K., Hoang Son, L., Abdel-Basset, M., Viet 
Long, H., Singh, S. P. & Manjul, M. 2019. A Novel and 
Comprehensive Trust Estimation Clustering Based 
Approach for Large Scale Wireless Sensor Networks. 
IEEE Access, 7, 58221-58240. 

Kuang, F., Xu, W. & Zhang, S. 2014. A novel hybrid KPCA 
and SVM with GA model for intrusion detection. 
Applied Soft Computing, 18, 178-184. 

Kumarshrivas, A. & Kumar Dewangan, A. 2014. An 
Ensemble Model for Classification of Attacks with 
Feature Selection based on KDD99 and NSL-KDD 
Data Set. International Journal of Computer 
Applications, 99, 8-13. 

Lakhina, A., Crovella, M. & Diot, C. 2005. Mining 
anomalies using traffic feature distributions. ACM 
SIGCOMM computer communication review, 35, 217-
228. 

Latah, M. & Toker, L. 2020. An efficient flow-based multi-
level hybrid intrusion detection system for software-
defined networks. CCF Transactions on Networking, 3, 
261-271. 

Lee, Y.-J., Yeh, Y.-R. & Wang, Y.-C. F. 2013. Anomaly 
Detection via Online Oversampling Principal 
Component Analysis. IEEE Transactions on 
Knowledge and Data Engineering, 25, 1460-1470. 

Li, L., Yu, Y., Bai, S., Hou, Y. & Chen, X. 2018. An 
Effective Two-Step Intrusion Detection Approach 
Based on Binary Classification and k -NN. IEEE 
Access, 6, 12060-12073. 

Li, T., Xie, S., Zeng, Z., Dong, M. & Liu, A. 2022. ATPS: An 
AI Based Trust-Aware and Privacy-Preserving System 
for Vehicle Managements in Sustainable VANETs. 
IEEE Transactions on Intelligent Transportation 
Systems, 23, 19837-19851. 

Liao, H., Zhou, Z., Zhao, X., Zhang, L., Mumtaz, S., Jolfaei, 
A., Ahmed, S. H. & Bashir, A. K. 2020. Learning-
Based Context-Aware Resource Allocation for Edge-
Computing-Empowered Industrial IoT. IEEE Internet of 
Things Journal, 7, 4260-4277. 

Liu, S., Guo, C., Al-Turjman, F., Muhammad, K. & De 
Albuquerque, V. H. C. 2020. Reliability of response 
region: A novel mechanism in visual tracking by edge 
computing for IIoT environments. Mechanical Systems 
and Signal Processing, 138, 106537-106537. 



 

 
147 

   Hassen & Abdlrazaq                                                                                                                                                ZJPAS (2024), 36(6);132-147       

 

ZANCO Journal of Pure and Applied Sciences 2024 

 

Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A. & 
Lloret, J. 2017. Conditional Variational Autoencoder for 
Prediction and Feature Recovery Applied to Intrusion 
Detection in IoT. Sensors, 17, 1967-1967. 

Marir, N., Wang, H., Feng, G., Li, B. & Jia, M. 2018. 
Distributed Abnormal Behavior Detection Approach 
Based on Deep Belief Network and Ensemble SVM 
Using Spark. IEEE Access, 6, 59657-59671. 

Mirsky, Y., Doitshman, T., Elovici, Y. & Shabtai, A. 2018. 
Kitsune: An Ensemble of Autoencoders for Online 
Network Intrusion Detection. 

S. Liu, C. G., F. Al-Turjman, K. Muhammad, and V. H. C. 
De Albuquerque. 2020. Reliability of response region: 
A novel mechanism in visual tracking by edge 
computing for IIoT environments. Mechanical Systems 
and Signal Processing, vol. 138, p. 106537. 

Song, S., Ling, L. & Manikopoulo, C. N. Flow-based 
Statistical Aggregation Schemes for Network Anomaly 
Detection.  2006 IEEE International Conference on 
Networking, Sensing and Control, 2006. 786-791. 

Stevanovic, M. & Pedersen, J. M. An efficient flow-based 
botnet detection using supervised machine learning.  
2014 International Conference on Computing, 
Networking and Communications (ICNC), 2014. 797-
801. 

Teng, S., Wu, N., Zhu, H., Teng, L. & Zhang, W. 2018. 
SVM-DT-based adaptive and collaborative intrusion 
detection. IEEE/CAA Journal of Automatica Sinica, 5, 
108-118. 

Tran, Q. A., Jiang, F. & Hu, J. A Real-Time NetFlow-based 
Intrusion Detection System with Improved BBNN and 
High-Frequency Field Programmable Gate Arrays.  
2012 IEEE 11th International Conference on Trust, 
Security and Privacy in Computing and 
Communications, 2012. 201-208. 

Umamaheshwari, S., Kumar, S. A. & Sasikala, S. Towards 
Building Robust Intrusion Detection System in 
Wireless Sensor Networks using Machine Learning 
and Feature Selection.  2021 International Conference 
on Advancements in Electrical, Electronics, 
Communication, Computing and Automation 
(ICAECA), 2021/10// 2021. IEEE, 1-6. 

Vinayakumar, R., Alazab, M., Srinivasan, S., Pham, Q.-V., 
Padannayil, S. K. & Simran, K. 2020. A Visualized 
Botnet Detection System Based Deep Learning for the 
Internet of Things Networks of Smart Cities. IEEE 
Transactions on Industry Applications, 56, 4436-4456. 

Wahba, Y., Elsalamouny, E. & Eltaweel, G. 2015. 
Improving the Performance of Multi-class Intrusion 
Detection Systems using Feature Reduction. CoRR, 
abs/1507.06692. 

Wang, H., Gu, J. & Wang, S. 2017. An effective intrusion 
detection framework based on SVM with feature 
augmentation. Knowledge-Based Systems, 136, 130-
139. 

 
 
 

 
 
 


