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A B S T R A C T: 
     Our aim in this study is to establishing nonstandard foundations, definitions and theorems for completion a noncomplete metric 

spaces. We have a lot of space or sets X which agree with all usual properties of complete, except at a small size subset of it. In 

this paper, by using nonstandard analysis tools founded by A. Robinson and axiomatized by E. Nelson, we try to reformulate the 

definition of completion corresponding to nonstandard modified metric  ̂, and to give a nonstandard form to the classical 

(standard) completion theorem and to use the power of nonstandard tools to overcome the incompetence of those spaces which 

has deprivation at a small size subset. 
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1.INTRODUCTION : 
  

 

In this paper, we present a nonstandard way for 

constructing a complete metric space which 

satisfy all conditions of metric spaces and it is a 

completion of a non-complete metric space and to 

overcome the gaps of the classical treatments by 

introducing a new definitions compatible with our 

aim for giving a precise and perfect proof for 

completion of non-complete metric spaces. In 

mathematical analysis the standard complete 

metric space it means that every Cauchy 

sequences in the metric space is converge to a 

point in it (Macías-Díaz, 2015). Throughout this 

paper    is the extension of  , includes all real 

numbers together with nonstandard quantities, and 

sometimes   called it set of hyperreals. 

 

 

 

 

 

 

2. BASIC CONCEPTS 

Definition 2.1 (Keisler, 1976) 

An element      is  

Infinitesimal if | |    for all positive real r; 

 Limited if | |    for some real r; 

 Unlimited if | |    for all real r. 

Definition 2.2 (Goldbring, 2014). 

For  ,     , we say   and   are infinitely close, 

written,    , if     is infinitesimal.  

Every infinitesimal is limited 

Definition 2.3 (Goldblatt, 1998) 

A real number   is called appreciable if it is 

neither infinite nor infinitesimal. 

Definition 2.4 (Keisler, 1976) 

Given a hyperreal number     , the       of 

  is the set 

         ( )  *         +. 
The        of   is the set      

         ( )  *          is limited+. 

Definition 2.5 (Goldbring, 2014)  
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(1) The set of limited hyperreals is 

       *       | | |      for some 

     +. 
(2) The set of infinitesimal hyperreals is 

       *         | | |         for all 

         +. 
(3) The set of unlimited hyperreals is 

           \     . 

Theorem 2.6 (Existence of Standard Parts) 

(Goldbring, 2014) 

 If         , then there is a unique     such 

that      . We call   the standard part (or 

shadow) of   and denoted by   ( ) or   . 

Corollary 2.7 (Keisler, 2011) 

Let   and   be a finite 

i.      if and only if   ( )    ( ). 
ii.      ( ). 

iii.  If     then   ( )   . 

iv. If      then   ( )    ( ). 

 

3- MAIN RESULTS  

Next we give a first results for our 

modification and extinction of the classical 

notions about complete, isometry, and dense with 

respect to nonstandard definitions given in 

previous. First we start with some new notions 

about ordering of sequences. All of this 

modifications and new notions will be necessary 

for nonstandard construction proof of completion 

of a non-complete metric space given the last. 

Definition 3.18  

 Let (   ) be a metric space and let   be the set 

of all Cauchy sequence in  , the two sequences 

   *  +   *  +          said to be: 

1) In the same order and denoted by 

     , if            
2) Standardly in the same order denoted by

     , if         
     

3) Unlimitedly in the same order denoted by

     , if         
             

Definition 3.2 

Let (   ) be a complete metric space and    . 

Then we say that   is nearly complete if   is 

dense in  .  

Definition 3.3 

Let (   ) and (   ) be metric spaces. Then by 

nearly isometry we mean a function       

where   is a bijection and for all       and 

 ( ( )  ( ))   (   )        
In general, a function       is nearly isometry 

we can write a function h if  

      

  ( ( )  ( ))   (   )                

Definition 3.4 

Let (   ) be a matric space. A subset     is said 

to be nearly dense if    can be nearly isometrically 

embedded in   . 

Lemma 3.5 

Let (   ) and (   ) be two metric spaces such 

that X is standard. Then a function       is 

nearly isometry if and only if for all        

there exists  ( )  ( )   ( ) such that  

  ( ( )  ( ))   (   ). 
Proof  

Let (   ) and (   ) be two metric spaces such 

that       is nearly isometry. 

Then   is bijective and for all   ,  
 ,  ( ( )  ( ))   (   ). 
Since   is standard then  (   ) is standard. 
Thus, by definition of shadow, we have 
   ( ( )  ( ))   (   ). 
Conversely, assume that               and 

      be a function such that  

   ( ( )  ( ))   (   )         then 

 ( ( )  ( ))   (   ).  
Now we have to show that   is bijective. 
If  ( )   ( )  then   ( ( )  ( ))      

Hence,  (   )     
Therefore       
Thus,   is on to one and   is onto by hypothesis  
and 
   ( ( )  ( ))   (   )       .  

Therefore,   is bijective. 
Hence,   is nearly isometry. 

Definition 3.6 

Let  ̂  * , -            +    is an arbitrary 

metric space equipped with metric  . where   

, -  {
             
             

      

Define 

 ̂  ̂    by:  ̂(, - , -)  

{
 (     )                        
                                           

 

Where            such that           , 

and we define equality among members of  ̂ by: 

, -  , -             
           .       
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The following examples are to verify our 

Definition 3.6 

 
Example 3.7  

1. Let   (   - and    , then 

 ̂  *, -            +  
        And  

, -  {

             

             
 

2. Let     and    , then  

 ̂  *, -            +  
And  

, -  {

             

             
 

Definition 3.8 

Let  ̂ be a subset of  ̂ such that    ̂  
*,  -    +. Then we define    to be the  

     {                        }  

Theorem 3.9 

( ̂  ̂) is a metric space. 

Proof  

We have to show that  ̂ is define a metric on  ̂. 

From Definition 3.6 we have 

, -  , -      

         (     )                  

Thus,  

 ̂(, - , -)

 {
 (     )  {

                      
                     

                                           

 

 

Where c is an appreciable real and   is infinitesimal. Before we prove that ( ̂  ̂) is a metric space, we have 

to prove the  ̂(, - , -) is really exists for every          X. we have   

| (     )   (     )|  | (     )   (     )|  | (     )   (     )|               (1)                                                                   

Also, for   a metric, we have  
| (   )   (   )|   (   )                                                                     (2) 

Applying (2) in (1) we obtain 

| (     )   (     )|   (     )   (     )                                        (3)                    

Since both       are Cauchy sequences in X, then  

 (     )     (     )                      
Equivalently, 

                                                                                                                     (4) 

From (3), (4) we get that | (     )   (     )|                   .  

Equivalently,  

 (     )   (     )               , 

 It follows that * (     )+    is a Cauchy sequence in    Since   is complete then  (     ) is converge to 

a value in  . That is  (     ) is exists and since   is metric, then  (   )          Thus,  if     
 (   )   . 

To show that  ̂ is well defined, we have to prove that if  

, -  ,  - and , -  ,  -, then  ̂(, - , -)   ̂(,  - ,  -) for              
      and         

    .  
Now, for any positive integer n we have  

 (     )   (     
 )   (  

    ) 
 (     )   (     

 )   (  
    

 )   (  
    ) 

Thus as , -  ,  -, then       and so as     . Therefore,      
  and 

      
 
. Then  

 (     
 )         (  

    )   . Therefore, 
 (     )    (  

    
 )                                                                                                                    (5)                            

Similarly, 

  (  
    

 )    (     )                                                                                                      (6) 

From (5) and (6) we obtain that  

 (     )    (  
    

 ) 
Thus  ̂(, - , -)   ̂(,  - ,  -).  
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To show that  ̂ is a metric on  ̂.  

1) Since   is metric on X then  ̂(, - , -)   . 

2) Let  , -  , - then                       (     )   (   )     ̂(, - , -)   . 

3) It is clear  ̂(, - , -)   ̂(, - , -). 

4)  ̂(, - , -)   ̂(, - , -)   ̂(, - , -) is directly from d is metric. 

Theorem 3.10 

( ̂  ̂) and (   ) are nearly isometry. 

Proof  
We have to find a bijective function between  

       ̂ such that   

 ̂( ( )  ( ))   (   ), 
Where  ̂  *,  -    +     *          
             + and  

 ̂(, - , -)

 {
 (     )  {

                      
                     

                                           

 

Let   ( )  ,  -        
Now, we prove that   is one to one and onto 

Let   ( )   ( )  We have to show that , -  
, -, 

 Now, since  ( )   ( ), then  ,  -  [  ], 

where 

,  -  *                        +  
,  -  *                        +  

Since ,  -  [  ], then ,  -  [  ] and [  ]  
,  -, In other way, we can say for all unlimited  , 

if       , then      and if    

                         , 

Therefore, 

                       .  

That is    . 

In general, if             , -  , -. 
Hence, we prove that   is one to one. 

To prove that   is onto  

Let    ̂   Then there exist     such that 

  ,  -  
That is    ( ) 
Hence,   is onto  
Now, we have to show that  

 ̂( ( )  ( ))   (   ) 
Let       such that  ( )  ,  - and  ( )  

[  ]. Then, 

 ̂( ( )  ( ))   ̂(,  - [  ])

 {
 (     )  {

                      
                     

                                           

 

Then either  

 ̂( ( )  ( ))   (     ) where    
  and                  . 

 
 
 

That is  ̂( ( )  ( ))   (     )  
 (   )             . 

Or, 
  ̂( ( )  ( ))   (     )      where    
  and                   . 

Then 
 ̂( ( )  ( ))   (     )  
 (   )             . 

In both cases we have  

 ̂( ( )  ( ))   (   ) 
Thus, ( ̂  ̂) is nearly isometry (   )  
 

Theorem 3.11 

( ̂  ) is dense subspace of ( ̂  ̂)   
Proof  

To prove that ( ̂  ) is dense subspace of ( ̂  ̂)  

we have to show that for all    ̂   ̂, then   is a 

limit point of  ̂. That is to show that           
 ̂   ̂, there exists    ̂  such that   
    ( ), or we have to show that we can 

embedded  ̂ into  ̂ isometrically. 

Let  ̂   ̂   ̂. Then from Definition 3.6, we 

have that  ̂ is a Cauchy sequence in  ̂. 

Let  ̂     such that           by Definition 

3.6 we have either           . 

Now, since    is Cauchy sequence, then       

                
Let *   + be a sequence in X such that       for 

all fixed k, that is *   + is a constant sequence. 

Then, its clear that      . That is    
    

           .  

From definition of         ̂, we have      ̂ and 

for all unlimited  ,  

 ̂(, - ,  -)   (     )    
                (because      ). 
 Therefore, , -  ,  -. It means that     . 

Thus,        ( ). 
That is ,  -  , -  *        +                                                                           
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Hence, ( ̂  ) is dense subspace of ( ̂  ̂)  
As a consequence of the all the previous given 

results in the following theorem, we will give 

prove of main considered problem of completion. 

 

 

Theorem 3.12 (Basic Theorem) 

( ̂  ̂) is complete metric space. 

Proof  

Since  ̂  * , -            +, where 

, -  {
             
             

     and 

           ̂(, - , -)  {
 (     )                        
                                           

 

for          X such that           , and  
, -  , -     . 

        
           . 

 Also   ̂  *,  -    +          {                        }  
 We will try to follow through the prove step by step: 

Step1:  Let * [   
]+ be a Cauchy sequence in  ̂ where [   

] is equivalence class of all Cauchy sequences. 

Then the metric distance between [   
] and [   

] is equivalence to  

 ̂([   
] [   

])  {
 (   

    
)                        

                                           
 

    {
 (     )                        

                                           
 

Since * [   
]+ is a sequence of equivalent classes of Cauchy sequences in  ̂ and * [   

]+ is Cauchy 

sequence, it follows that *  + is a Cauchy sequence in X. 

 Hence                     . 

Step2: Our aim in this step is to take an element in  ̂ and show that our Cauchy sequence * [   
]+ in  ̂ is 

converge to an element in  ̂.  

Now, let , -   ̂. Then 

 , -  *                          +, and 

  ̂(, - , -)  {
 (     )                        
                                           

 

        {
 (     )  {

                      
                     

                                           

                                                                          (7) 

Without loss of generality, we can take , -  [   
],  where [   

]    ̂.  

Since *  + is a Cauchy sequence in   we can write ,  - as: 

 ,  -  {*  +      }, where          . 

Now, since , -  , -             
           , then 

  ̂(, - [   
] )  {

 (      )  {
                       
                      

                                           

 

Since we have                     and        , then 

  ̂(, - [   
] )   ̂(,  - [    

] ) 

 {
 (      )                                

                                           
 

 {
 (     )                                  

                                           
 

But we know that      . Then  (     )   .  

Hence, a Cauchy sequence * [   
]+ in  ̂ is converge to a point , -    ̂. 

Step3: the last step is to take a sequence in  ̂ and to show that it is converge to that point that belongs to  ̂  
Assume that * ̂ + is a Cauchy sequence in  ̂, then 
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 ̂( ̂   ̂  )  {
 (       )  {

                        
                       

                                           

,  

and since , -    ̂, then we have                   such that  ̂  , -. Therefore, 

  ̂(, - , -)   ̂( ̂   ̂  )  {
 (       )  {

                        
                       

                                           

 

      {  (     )                    
                                           

,  

where  ̂  , - and    , -  * ̂ + for fixed  . 

 Since *  + is a Cauchy sequence in  , then                     .                        (8)                   

Therefore   ̂( ̂   ̂  )   (     )   . 

Now, by Theorem 3.11, we have ( ̂  ) is dense subspace of ( ̂  ̂).  

Then             , there exist [   
]   ̂ such that    [   

]   ̂. 

By (1) we have         
           .                                                                                                             

(9) 

Since        and *  + is a Cauchy sequence in  , then *  + is a Cauchy sequence in  .  

Thus           
            , in the other hand we have      . 

Then                      .  

Similarly,  ̂( ̂   ̂  )   (     )   . 

Thus   ̂   ̂                .  

Thus * ̂ +  {[   
]} is a Cauchy sequence in  ̂  

Again by Theorem 3.11, we have   ̂ is nearly dense in  ̂.  

Then there exist  ̂   ̂ such that  ̂   ̂             .                                                          (10) 

To complete the prove we have to prove that  

 ̂   ̂             .                                                                                                               (11) 

Now, by (7) and (8) we have                    . 

Returning the result to the correspond equivalent classes with respect to the metric  ̂, we obtain that 

  ̂   ̂                 . 

By (10) we have   ̂   ̂             . 

Hence,     ̂   ̂             . 

That is a Cauchy sequence * ̂ + in  ̂ is converges to  ̂ in  ̂. Thus ( ̂  ̂) is complete metric space. 

Theorem 3.13 

If   is nearly complete, then  ̂ is completion of  , 

and either 

   ( )    ̂ or  ( )   ̂. 

Proof  

Let   ,*  +-   ̂. Then * (  )+    is a 

sequence in  ( ). We will try to prove that the 

sequence * (  )+        ̂, that is to show 

that  ( ) is nearly dense in  ̂.  

Now, 

 ̂(   (  ))   ̂(   ( (  )) )

 {
 (    (  ))                                             

                                          
 

                                                   

 {
 (     )                                      

                                           
                           

Since *  + is Cauchy, then       
              , and  
                                                          
 

{
 (     )                                                  

                                           
 

It means that  (     )                   . 

 Which means that (  )                 . 

Then  (  )     ̂.  

On the other hand, we have  (  )  
  ( )             

Then   ( ) is nearly dense in  ̂. By Lemma 3.5 

we have either   ( )    ̂ or  ( )   ̂. 
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