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A B S T R A C T: 
Reported electron collision cross sections data in the energy range ~ 0 to 300 eV     from gaseous biomolecule Tetrahydrofuran 

(THF) have been used to calculate the electron energy distribution function (EEDF) and swarm parameters for electrically excited 

of THF, using a two-term solution of the Boltzmann equation. The electron swarm parameters namely (mean energy, drift 

velocity, diffusion coefficient, electron mobility, characteristic energy, attachment and ionization coefficient), at room temperature 

and atmospheric pressure are presented over a wide range of applied electric field strength E/N (E is the electric field and N is the 

gas number density) varying from 0.1 Td to 1000 Td (1Td = 10
-17

 Vcm
2
). The EEDF found to be non-Maxwellian. The electron 

swarm parameters are compared with those calculated using multi term kinetic theory and experimentally using the pulsed 

Townsend technique. The influence of inelastic cross section on the calculated transport parameters is also explained. 
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1.INTRODUCTION : 

 

High-energy ionizing radiation e.g., α-

particles, protons, heavy ions,  -rays, and X-rays, 

use in radiotherapy and radiodiagonistic exams, 

when incident the biomolecule model systems or 

living cells leads to loss genetic information, cell 

death and genetic mutation (Hall and Giaccia, 

2018) by secondary electrons when the energy of 

low-energy electrons (LEEs) below 20 eV, it can 

induce damage to DNA. (Martin et al., 2004) 

show that the low-energy electrons (LEEs) induce 

damage in DNA, as well as to basic DNA 

components such as bases (Abdul-Carime et al., 

2004), deoxyribose sugar (Ptasinska et al., 2004) 

and the phosphate group (Elahe-Alizadeh et al., 

2015; Pan and Sanche, 2005) via the formation of 

negative ions or resonances, these processes 

occurs via dissociative electron attachment 

(DNA). 

 

 

 

 

 

 

The interaction of positron with biological matter 

and human tissue is important key for the medical 

field, in fact as the electron and positrons are 

thermalize in biological matter and human tissue, 

the annihilation  -rays emitted by annihilation of 

two particles such technique used in imaging 

application called positron emission tomography 

(PET) (Cherry et al., 2003). Furthermore, the 

interaction of electrons with water is important to 

study the behavior of biomolecules, water vapour 

used as a replacement for the bimolecular in 

process of radiolysis tracks (Muñoz et al., 2008). 

Tetrahydrofuran molecule (THF, C4H8O), or 

oxolane, is the most best matter in gas phase used 

to study the biomolecules matter after water 

(Stokes et al., 2020), can be viewed as a sugar-like 

component of the backbone of DNA. The 

backbone of DNA consists as a series of 

Tetrahydrofuran (THF) molecules held together 

by phosphate bonds, also Tetrahydrofuran (THF) 

is an important component of RNA (Thiemer et 

al., 2003).  

      More recently, Tetrahydrofuran has been 

investigated experimentally and theoretically to 

understanding the low energy electron collisions 
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and the dynamic of energy deposition in DNA 

(White et al., 2018; White et al., 2014; White et 

al., 2014a), For plasma interaction with biological 

matter, the electron collision cross sections play 

the important role to study the electron transport 

parameters in gaseous systems. Several electron 

collision cross sections have been measured 

experimentally and derived theoretically for 

Tetrahydrofuran. These includes, six full sets of 

Tetrahydrofuran (THF) cross sections (momentum 

transfer, vibrational excitation, electronic 

excitation ionization and attachment cross 

sections) have been proposed  experimentally and 

theoretically over various electron energy ranges: 

by (Garland et al., 2013) for electron incident 

energies between  0.1 eV to 300 eV, (Fuss et al., 

2014) for electron incident energies from  1 eV to 

10KeV, (Bug et al., 2017) for energies ranging 

from 30 eV to 1000 eV, (Swadia et al., 2017, 

2017a) for electron energies between the 

ionization threshold to 5000 eV, and (Casey et al., 

2017) modified the (Garland et al., 2013) cross-

section sets by the first measurement of electron 

swarm parameters in pure gaseous 

Tetrahydrofuran (THF), using inverse swarm 

method. Thereafter, (de Urquijo et al., 2019) who 

refined the (Casey et al., 2017) cross-section sets 

by performing and analyzing the swarm 

parameters of THF-Ar and THF-N2 mixtures. 

     The swarm parameters have a long history 

from the early studies (Frost and Phelps, 1962; 

Engelhardt and Phelps, 1964; Engelhardt, et al., 

1964; Huxley and Crompton, 1974) to more 

recent investigation (Šaši´c, et al., 2013; Deng and 

Xiao, 2014). Theoretically swarm parameters 

may be calculated using Monte Carlo Simulation 

or Boltzmann equation analysis using electron 

energy distribution function (EEDF) with the 

available sets of cross sections. The EEDF 

calculated by the electron energy gain and loss 

due to acceleration with electric field and 

electrons collision (Itikawa, 2007).  

      The electron swarm parameters of THF, 

namely, drift velocity, electron mean energy, 

ionization and attachment coefficients, are widely 

studied in the literature (Garland et al., 2013; 

Duque et al., 2015; Casey et al., 2017). These 

swarm parameters are also calculated in THF-H2O 

(White et al., 2014) and THF-Ar and THF-N2 

(Wolff et al., 2019) gas mixtures. More recently, 

the binary mixtures of THF-Ar are studied by 

(Stokes et al., 2020).   

      In the present work we have calculated the 

electron swarm parameters of Tetrahydrofuran 

(THF) at room temperature based on the two term 

solution of Boltzmann transport equation that is 

solved for values of E/N ranging from 0.1 Td to 

1000 Td using the NOMAD code (Rockwood and 

Greene, 1980).     

2. The Boltzmann equation 

     The basic of Boltzmann transport equation 

used in this study is given as (Frost and Phelps, 

1962, 
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Here, 

              
J

aiJm

e

m uQuQuQuQuQ                                               (2)         

Where   uQe

m  denotes an effective collision 

frequency for momentum transfer, M, KB, E, u, N 

are the molecular mass, Boltzmann constant, 

applied dc electric field, electron energy and the 

gas density respectively, Tg is gas temperature, 

Qm(u) is the momentum transfer cross-sections 

related to the total cross section Qm(u)= QT(u)(1-

cosθ), θ is scattering angle (Lucas, et al., 1973). 

QJ(u), Qi(u), Qa(u) are the electron cross sections 

for excitation (rotational, vibrational, electronic), 

ionization, and attachment respectively, and uj is 
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the energy loss due to collisional excitation. The 

last two term is the influence of superelastic 

collision it occurs at low electric field, Q-J(u) is 

superelastic cross-section, uJ energy gain due to 

superelastic collision. The superelastic cross-

section Q-J can be written as (Mitchel and 

Zemansky,1971),

 

     JJ

J

J uuQ
u

uu
Q 


                                                                          (3) 

      The initial electron energy distribution function EEDF with a mean electron energy  eBTKu 5.1   

was chosen as Maxwellian with temperature Te  (Nighan, 1970),   
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      Using the electron energy distribution 

function one can calculate the electron swarm 

parameters as follows (Othman, et al., 2019; 

Hagelaar and Pitchford, 2005; Nakamura and 

Lucas, 1978) where the electron energy 

distribution function   uf  obeys to the 

normalization condition, 
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  The mean electron energy, 

         



0

2

3

duufuu o                                                                                   (6) 

    The density-normalized electron mobility µe  

         
 

 













0

2
1

2

3

1
du

du

udf

uQ

u

m

e
N o

e

m

e                                                 (7) 

    The electrons drift velocity, 

           Evd                                                                                            (8) 

    The density-normalized transverse diffusion coefficient, 
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The characteristic energy uk , 
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     The reduced-density ionization coefficient α/N is given by (Othman, et al., 2020; Morgan and Penetrante, 

1990; Láska, et al., 1984)  
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where Qi(u) is the ionization cross-section. 

      The reduced-density attachment coefficient η/N is given by:  
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where Qa(u) is the attachment cross-section. 

      Electron swarm parameters were calculate 

using collision cross section for a THF vapour 

number density N=7.3765x10
21

 cm
-3

, which is 

equivalent to 1 atm at 298 K.  

 

3. Cross Section 

         The electron energy distribution function 

(EEDF) and electron swarm parameters in gaseous 

Tetrahydrofuran (THF, C4H8O) was calculated 

from the sets of cross section (elastic and 

inelastic) this sets includes 21 collision processes: 

one momentum transfer cross section (Qm) taken 

from (Trevisan, et al., 2006; Garland, et al., 2013;  

Casy, et al., 2017 and Stokes, et al., 2020), 12 

vibration excitation (Qv1, Qv2, Qv3, Qv4, Qv5, Qv6, 

Qv7, Qv8, Qv9, Qv10, Qv11, Qv12) with threshold 

energy 0.228, 0.72 0.114, 0.134, 0.18, 0.363, 0.45, 

0.65, 0.15, 0.083, 0.27 and 0.330 eV respectively 

are taken from (Duque, et al., 2015) and six 

electronic excitation  cross sections of (Garland, et 

al., 2013) have been used based on the energy loss 

spectra of (Do, et al., 2011). The attachment cross 

sections of (Stokes, et al., 2020) have been used, 

these lies between the values of (Garland, et al., 

2013) and the values of (de Urquijo, et al., 2019) 

with threshold energy of 0.28 eV, lying between 

the threshold energy of 1 eV for (Garland et al., 

2013) and 0.08 eV for (de Urquijo et al., 2019).  

The ionization cross sections with threshold 

energy 0.955 eV of (Garland, et al., 2013) have 

been used, and these cross-sections are in good 

agreement with (Mozejko and Sanche, 2005),  

(Fuss, et al., 2009) and (Dampc et al., 2011). 

 

4. Results and Discussion 

     To solve the electron energy distribution 

function (EEDF) which was based on the two-

term solution of Boltzmann equation, the data of 

electron collision cross-sections of THF is 

explained in previous section, used as main input 

data to calculated electron swarm parameters.  

      The electron energy distribution function 

EEDF as function of electron energy, are obtained 

by using two-term approximation solution of 

Boltzmann equation method ( Eq. 1) at different 

values of electric field strength E/N (E: electric 

field, N: gas number density) electric field 

strength E/N, expressed in unit of Townsend.  

      The calculated electron energy distribution 

function EEDF for a dc field in THF at different 

values of E/N at temperature 298 K and pressure 1 

atm are shown in figure 1. It is found that at 

lowest electric field strength E/N, the electron 

energies are thermal and the electron energy 

distribution function EEDF is Maxwellian as 

shown in equation 4 with mean electron energy 

eBTKu 5.1 , the Maxwellian distribution function 

normalized by  equation 5 where Te is electron 

temperature in unit of eV. At  E/N<20 Td, EEDF 

drops sharply after several (eV) the Maxwellian 

function’s will appear as straight lines, because 

the elastic cross-section  is constant at low electric 

field and the vibrational cross section increases 

around 0.1 eV and decrease when electron energy 

greater than 1 eV. Therefore, in this region the 

degree of ionization is very small and the energy 

created from electric field is mainly used for 

vibrational excitation. However, as the E/N is 

increased the EEDF located at higher energy 

range, the EEDF is clearly non-Maxwellian, and 

has a shoulder at about 2 eV when E/N≥20 Td, 

due to the large electronic excitation and 

vibrational cross-section. The tail of the 

distribution function shift to higher energy due to 

inelastic collision which reflects the dominant 

electron-molecule energy exchange processes in 

this region more ionization or excitation collision 

occurs.  

       Figures 2-8, present results for electron 

swarm parameters in THF, including mean 

energy, drift velocity, diffusion coefficient, 

mobility, ionization and attachment coefficient. 

The results presented are calculated and analyzed 

using two-term solution of the Boltzmann 

equation by a balance between power input from 

an applied electric field E and energy loss rate via 

electron collisions. All results are calculated as a 

function of the reduced electric field E/N over a 

wide range varying from 0.1Td to 1000 Td, (1 Td 

= 10
-17

 Vcm
2
) at fixed temperature 298 K and 

pressure 1 atm. Figure 2 demonstrated mean 

electron energy as a function of E/N, at low 

electric field strength E/N>10 Td the mean energy 

is in thermal equilibrium, it is essentially isotropic 

remain nearly constant, as we move to higher field 

the mean energy rapidly increases with increasing 

E/N, this is because at high energy region the 

inelastic processes are dominated.  The behavior 

of the mean electron energy is also reflected in the 

electron drift velocity and diffusion coefficient.  It 

is seen the present calculation agree well with the 
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theoretical values of (Garland, et al., 2013; White, 

et al., 2014) and (Duque, et al., 2015). 

      The present values of drift velocity for 

THF are shown in figure 3, the previous 

experimental values of (Casey, et al., 2017; de 

Urquijo, et al., 2019) and theoretical values of 

(Stokes, et al., 2020) are displayed in the same 

figure. A good agreement has been shown over 

the entire range of E/N. It is evident that the 

experimental data of (Casey, et al., 2017)  fall 

below present results, the difference is up to about 

15% over the range of E/N<40 Td. As shown in 

this figure, the calculated drift velocity in thermal 

equilibrium with background THF vapor from 0.1 

Td to 10 Td linearly increase, where elastic and 

vibrational collision are dominating. Around 20 

Td to 40 Td a plateau in the drift velocity is 

observed due to the effect of the electronic 

excitation. At high reduce electric field strength 

E/N>100 Td the ionization channel is dominate, 

the drift velocity increase up to the highest 

calculated value at 1000 Td.  

      The reduced transverse diffusion 

coefficient DTN for pure THF vapor as function of 

E/N values  is shown in figure 4. The present 

calculation was found in good agreement with 

theoretical values of (Garland, et al., 2013) and 

(White, et al., 2014). The normalized reduced 

electron mobility µeN is shown in figure 5, at low 

E/N values the electron mobility is in thermal 

equilibrium, when E/N is around 30 Td, a 

maximum values can be observed, then the 

electron mobility start to decrease with increasing 

E/N, because at E/N>30 Td the attachment 

coefficient decrease the number of electrons. The 

behavior of characteristic energy eDT/µe displays 

in figure 6. 

     Figure 7 is illustrated the reduced-density 

attachment coefficient η/N in THF as a function of 

E/N values, in comparison with the experimental 

values of (Casey, et al., 2017) and (de Urquijo, et 

al., 2019), as well as the theoretical values of 

(Stokes, et al., 2020). Throughout the range of 

5≤E/N≤100 Td, good agreements have been 

observed. At low reduced electric field, E/N<20 

Td the electronegative region observed, in this 

region the reduced attachment coefficient 

decreasing with increasing E/N until 

approximately 30 Td, the resonance region appear 

at around 40 Td, then start to increase up to 70 Td, 

again start to decrease, around 100 Td the 

ionization channel dominated. This is because 

around 20.5 eV a large increase in the magnitude 

of the dissociation electron attachment DEA 

observed approximately equal to 0.0033x10
-16

 cm
2
 

(Garland, et al., 2013). The reduced-density 

ionization coefficient α/N in THF as a function of 

E/N values is shown in figure 8. The present 

values are compared with the theoretical values of 

(Stokes, et al., 2020) and with the measured 

values of (Casey, et al., 2017; de Urquijo, et al., 

2019). Throughout the range of 100≤E/N≤1000 

Td, the theoretical results of (Stokes, et al., 2020) 

and experimental results of (Casey, et al., 2017) 

slightly lower compare with the present results. 

The coherent results obtained confirmed that two-

term solution of Boltzmann equation analysis of 

the present study is valid.  
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5. Conclusion 

 

      In the present work, we have examined the 

behavior of electrons in applied uniform dc 

electric fields as a function of reduced electric 

field strength E/N. The two-term solution results 

give values for EEDF and mean energy, drift 

velocity, transverse diffusion coefficient, electron 

mobility, characteristic energy, attachment and 

ionization coefficient as a function of E/N in the 

range between 0.1 Td to 1000 Td. These results  

 

 

 

were obtained based on binary collisions of 

electrons with THF molecule. A good agreement 

between the calculated and previous theoretical 

and experimental values is observed. 
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