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ABSTRACT:

This paper is devoted to study the local bifurcations and stability of three dimensional systems that representing a Shil'nikov chaos
during copper electro-dissolution. The local stability analysis of equilibrium points has been studied. It is shown that transcritical
bifurcation can appears in the system. Also, the existence of Hopf bifurcation of the system around the equilibrium points is
studied when the parameter passes through the critical value. Normal form theory is used to study bifurcating periodic solutions.
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1.INTRODUCTION :

For the qualitative investigation of
dynamical systems bifurcation is the most vital
theory, and it can be utilized to a expose
complicated dynamical behaviors of the system
under investigation. One of the more classical
problems in the qualitative theory of polynomial
differential systems in three dimension is to
characterize the existence of periodic solutions.
Hopf bifurcation provides the simplest criterion
for a family of periodic solutions to bifurcate from
known family of equilibrium points of dynamical
system.

A Hopf bifurcation in R3? takes place in an
equlilbrium point with eigenvalues of the form
eigenvalues +iw, and the other eigenvalue 4 # 0.
Also, a Hopf point is said to be transversal if the
parameter-dependent complex eigenvalue cross
the imaginary axis with non-zero zero derivative.
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The specific part of local bifurcation is

transcritical bifurcation. It is categorized by an
equilibrium having an eigenvalue whose actual part
passes through zero. In the transcritical bifurcation,
equilibrium points are not destroyed neither created,
but for a critical value of the parameter they switch
stability. We study the local bifurcation theory of
vector fields, for details about local bifurcation
theory (see the books (Kuznetsov, 2013; Stephen,
2009)).
In 1988 a series of experimental investigations on the
electrodissolution of a copper rotating disk in a
H2504/NacCl solution have been studied (Basset &
Hudson, 1988). Based on their experimental time-
series they presented evidence of Shilnikov chaos.
According to the evidence, they reported a
comparison of their time-series study with those
obtained from a mathematical model considered
previously by (Richetti, et al., 1987) in a discussion
concerning homoclinic chaos in the Belousov—
Zhabotinski reaction. The model is defined by the
following three-dimensional ordinary differential
equations
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X=Y,

= Z, (D

7= —Z-13Y—uX+X?-
1.425Y% + 0.2XZ — 0.01X?Z.

where X,Y and Z represent chemical concentrations
and X,Y,Z are their corresponding time derivatives
and a is a real parameter. The qualitative behaviors
such as homoclinic (Shil'nikov) and Hopf bifurcation
of this system has been studied, see for instance
(Basset & Hudson, 1988; Richetti, et al., 1987). The
authors are only mentioned the Hopf bifurcation
appear for this system without computations and
analysis, but in this paper, we analysis Hopf
bifurcation at all equilibrium points and investigate
presents the formulae for determining the direction
of the Hopf bifurcations and the stability of
bifurcating periodic solutions by applying the normal
form theory have been studied in (Hassard & Wan,
1978).

We have two key objectives in this study. The first
objective is to demonstrate that system (1) undergoes
a transcritical bifurcation, in which an exchange of
stability occurs of system (1) that takes place at
equilibrium points for certain bifurcation values of
the parameters of the system. The transcritical
bifurcation of system (1) by applying Sotomayor’s
Theorem via means of ( Perko, 2006), happening in
this system will be fulfilled with respect to the
parameter a. The second objective is to investigate
the existence of the Hopf bifurcation of system (1)
by applying the normal form theory introduce by
(Hassard & Wan, 1978). The Hopf bifurcation is also
a kind of typical local bifurcation. It is the birth of a
limit cycle (isolated closed orbits) from an
equilibrium point of system. The study of Hopf
bifurcation in three-dimensional dynamical system
attracted the attention of many researchers ( Junze, et
al., 2018; Jiang , et al., 2010; Liu, et al., 2012). By
selecting a suitable bifurcation parameter, There is
good interest shown in finding of Hopf and
transcritical bifurcations for some 3- dimensional
quadratic polynomial differential systems; as an
example ( Toniol & Llibre, 2017; Sang & Huang,
2020).

The rest of this study is organized as follows: In
section 2, we analyze transcritical bifurcation
applying by Sotomayor’s theorem, and we also,
study the local stability of equilibrium points of
system (1) by appling Routh Hurwitz criteria. In
Section 3, we analyze Hopf bifurcation at
equilibrium poins of system (1) as well as the
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stability of the bifurcation limit cycles via Hopf
bifurcation theorem. Finally, conclusions are
summarized in Section 4. (1)

2. Transcritical Bifurcations and Local
Stability of Equilibrium Points of
System (1)

In this section, we investigate trancritical
bifurcations of system (1) by using Sotomayor’s
Theorem ( Perko, 2006), and local stability of
equilibrium points of system (1) via Routh Hurwitz
criteria.

Theorem 2.1. For system (1), transcritical
bifurcation occurs at the origin as a pass through
zero.

Proof. We note that in system (1), a simple
evaluation of transcritical bifurcation will be
performed with regard to the parameter a. We have
a = 0 and the vector field f associated with system
(1) is given by

foa)=,Z,-Z—13Y —aX + X? -
1.425Y2 + 0.2XZ — 0.01X22),

where x = (X,Y,Z) € R3. The vector field f has
only two equilibrium points origin 0(0,0,0) and
E(a,0,0). Ifa =0, then f has only one equilibrium
point at the origin. Moreover, when a = 0, the
Jacobian matrix of system (1) at origin is

o 1 0
o 0o 1
10

the characteristic equation of J is

13
P(/l) :){3+AZ+E/1 = 0,
whose the roots are A3 = 0,4, , = —% + i?. The
transcritical bifurcation is characterized by the
exchange of stability at the origin when parameter a
passes through the bifurcation value a = 0. Thus, we
will use Sotomayor’s Theorem ( Perko, 2006) to
show that system (1) exhibits a transcritical
bifurcation. Note that, the vectors v = (1,0,0) and

w = (3, 1,1) are eigenvectors of the matrices J and
10



JT, respectively, corresponding to the eigenvalue
A, = 0. Furthermore, we have that

0
WT(a_i)(O' 0) =0,

wT (Dy (g—£> (0,0)v) =—-1=+0,

wT(D,*f(0,0)(v,v)) = 2 # 0.

Hance, all the hypotheses of Sotomayor’s theorem
are satisfied. Therefore, system (1) admits a
transcritical bifurcation at the equilibrium point the
origin at the bifurcation value a = 0. ]

Remark 2.2. System (1) neither admits saddle-
node nor pitchfork bifurcations about equilibrium
points because the second and fourth conditions in
Sotomayor’s Theorem ( Perko, 2006), page [338—
339] are not satisfied.

Proposition 2.3. For system (1)
iLIf0<ax< % then the origin is asymptotically

stable and if a< 0 or a>1—z, then the origin is
unstable.

i If —22+22V3<a<0, o a<-2-
%\/5, then equilibrium point E(a,0,0) is
asymptotically ~ stable. If —% — 21030\/_ <a<

—%+%\/§ or a> 0, then equilibrium point

E(a, 0,0) is unstable.
Proof.

I.The Jacobian matrix of system (1) at 0(0,0,0) is

—a —— -1
10
the characteristic equation of ] is

3 5 13
A+ A +E/1+a=0. (3)

By the hypothesis and Routh-Hurwitz criterion
(Llibre & Valls, 2011), then zeros of the equation
(3) have negative real parts, hence the origin is

Mirkhan. J. and Amen A./ZJPAS: 2022, 34 (4): 83-91 85

asymptotically stable. Butifa < 0ora > % then at

least one zero of the equation (3) have positive real
part, then the origin is unstable.

1i.The Jacobian matrix of system (1) at E(a, 0,0) is

0o 1 0
{0 o 1
Ji= 13 (a—10)% |
“ 710 100

the characteristic equation of J; is

— /12+ sA—a=0. 4)
Also, by means of the Routh-Hurwitz criterion, for
equation (4) the real parts of the roots are all

—10)2
13 (a—10) +a>0.

negative if and only if a < 0 and 1000

Then must be —3170 200\/—<a<0 of a<
—%—% 3, therefore the equilibrium point

E(a,0,0) is asymptotically stable. On other hand, if

0L T g <~ T BT g >0, then

equilibrium point E (a, 0,0) is unstable ]

3. Hopf Bifurcation Analysis of System
(1)

We investigate direction and stability of a periodic
orbits of system (1) under some conditions.
Moreover, we analyze Hopf bifurcations at equilibria
0(0,0,0) and E(a,0,0) with a=+ 0 and obtain
expressions and stabilities of the corresponding
bifurcating periodic orbits.

3.1. Hopf Bifurcation Analysis at the Origin:

Proposition 3.1. (Existence of Hopf bifurcation).
The characteristic equation (3) has negative
eigenvalue A; = —1 and pair of purely imaginary
. , .V130 . .
eigenvalues 4;, = tiw = ilT if and only if
a=1—3 , then system (1) undergoes a Hopf

bifurcation at the origin .

Proof. It is easy to show that equation (3) has
negative eigenvalue and pair of purely imaginary

ZANCO Journal of Pure and Applied Sciences 2022
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. . . 13 . 13
eigenvalues if and only if a = o Then if a = o

equation (3) becomes

FrrrSar B g
10 10
hence

(1 + 1)(102% + 13) = 0. (5)

Therefore, equation (5) has one real root 1; = —1
and two purely imaginary eigenvalues

. V130
/11’2 = i_l

30 . .
TR We can choose a as the bifurcation
. f 13
parameter, and the critical value is a = a, =
From to equation (3),we have

da 10
da  30A2+201+13

Using the implicit function theorem, then

transversality condition satisfies
R i _2 #0
e(da)|a=ao,a=i%_z3 ’

and

I da ~ 5v130
m(da)|a=ao,/1=i 1307299

Hence, first and second conditions of Hopf

bifurcation are satisfied. Nevertheless, for applying
the Hopf bifurcation Theorem ( Guckenheimer &
Holmes, 2013) and system (1) undergoes a Hopf
bifurcation at the origin. m

We now, can study the stability, direction and period
of periodic solution of system (1) at the origin.

Theorem 3.2. The Hopf bifurcation of system (1)
at the origin is non-degenrate and subcritical. The
period of periodic solution and its characteristic

1258657 695827
exponent are B, =
. 14830400 5029440
respectively.

1T2=

Proof. Using the eigenvectors of the Jacobian matrix
Jo as the basis for a new coordinate system equation.

By simple calculation, the  eigenvectors
. . .v130

corresponding to the eigenvalues A; = i and

A3 = —1 are v, + iv, and v respectively, where
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13 10
o 0 1
Define
0 1 1
/ 130
M = (v;,v1,v3) = |

0 13
10
For system (1), the transformation is

()-+6)

10 ‘1\.
/

gives
. V130v
U=—-—=+Puv,w),
. 130u 6
V=7 + Q(u,v,w), (6)
w=-w+ R(u,v,w),
where
V130(13 v—10 w)(v4+w)? = 57 uw
P(u,v,w) = +
29900 46
n 37413002 = 97+/130vw
1495 1495
9v130w?  57+/130u?
1196 920 '’
(13 v-10 w)(w4+w)? 37 v?
Qu,v,w) =-— - -
2300 115
97vw+9W2 741u?  57+130uw
115 92 920 460 !
(13 v-10 w)(w+w)? = 37v?
Rw,v,w) = + +
2300 115
97vw  9w?2 741 u? n 57 V130uw
115 92 920 460 )

Accorcding to the method in (Hassard & Wan, 1978)
for system (6) we obtain



_1{a8%p | a%pP 920 62Q)
gu = 4 <6u2 + ov? ti (6u2 + ov?

_ 890 89Y130
" 368 4784 ’
1(0%P 0%P 0%Q
g2 =355 250
l.(az_Q _ 9% 42 aZP) _1037i 1037130
du2  Qv2 audv) | ~ 1840 23920 ’
1(0%P 9%P 92Q
Y20 =7 (ﬁ Tz T uan T
l.(az_Q _0%Q 2 aZP) _1037i 1037130
duz  Qv2 audv) | ~ 1840 23920 ’
Gy = (L4 20y DO 2
21 7 g\gus ouov? ou?ov ov3
. (030 23Q o3p a3p)
Tl (6u3 T oudv? ou2dv  ov3
39 3i ==
~ 9200 9200 130. (7
We also have to find the solution of
1 (0%R , 3%R 89
h11 = - (_ + _) -
4 \ou? = ov2 " 368’ (8)
My = (ZE_ TR 2Ry 10w
20 T 4 \ouz  oav2 duov) ~  1840°
The solution of
(A3 —2iw)pyo = —hy.
is
89
¢11 - _ﬁl
(10)
1037 1037 i
¢20 = - + V 130

11408 57040

Furthermore, we have
_ 1 a%p 0%Q . ( 0%Q %P )
6110 T2 <6u6w + ovow ti ouow dvow

:2_ 1129\/@

460 11960

1( a%p 0? L a%p

z -2 i(=L+ 20
2 \ duow dvow ouow dvow

:ﬂ i 353 \/m

260 ‘11960
g21 = G101¢P20 + 2 G110P11 + G21

818807 , . 45671757
= - +i v130.

6559600 682198400

G101 =

(11)

The critical values of Hopf bifurcation can be
computed as follows
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M)

c,(0) = i(gzogn -2 (|g11|)2 -

1 1258657 . 2472499 | ———
+Eg21 " 29660800 + 1 44596400 130,
__ Re(ci(0) _ 1258657
Ha T Re(A'(ap)) ~ 6448000’ (12)
1258657
P =2 Re(Cl(O)) ~ 14830400’
_ Im(cl(o))+u21m(l’(ao)) _ 695827
T2 - w T 5029440"
Since u, <0, B,>0 and 1, <0, then Hopf

bifurcation is subcritical and non-degenrate with
periodic orbit and it is unstable. Also the period of
bifurcating periodic solutions decreases, which
indicates that there is an orbitally unstable limit
cycles. m

3.2. Hopf Bifurcation Analysis at E(a, 0, 0):

Similarly we can study the Hopf bifurcation at the
equilibrium point E(a, 0,0) with a # 0.

Proposition 3.3. (Existence of Hopf bifurcation).
370 | 2003 370 2003

If a=—-——+ or a=——-— , the
13 13 13 13

characteristic equation (4) has three eigenvalues one
is negative root, the other two a pair purely
imaginary conjugate roots, then system (1)
undergoes a Hopf bifurcation at the equilibrium point
E(a,0,0).

Proof. Suppose that the characteristic equation
(4) have roots A3 € R and A, , = tiw, where w €
R. Then we can obtain that

(a 10)

A=) +0?) = B+ 12+ 20—,

and simple calculations shows

(a —10)? 13
Aa=———""-—"— w=—,2 ,
3 o0 ¢ Tkt =a
then, it is easy to obtain that equation (4) has two
real roots A; = _ 3700, 2000V or A3 = _ 30
169 169 169
2000V3 . . .

R and two purely imaginary eigenvalues
Alz_+z' |fandonly|fa—al——%+20i)3‘/§
ora=a,= —ﬂ—zow_

13 13

respectively. According equation (4), we have
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88
a _ al?-10 A2-50
da  a?1+150212-20 al +100 A+65
Using the implicit function theorem, then
transversality condition satisfies
Re (d_,l) | _ 5145425863
da) 'a=a, =112 T 16684226809
888000000
16684226809’
Im (d_,l) | _ 756257800 V130vV3
da/ 'a=a; A=i*=2 o 216894948517
1173636000 Y130
216894948517 '’
and
Re(—)| _ 514542586V3 888000000
da’'a=a, 1= l“z" T 16684226809 16684226809’
(_)| _ 1173636000 V130
da’'a=a, A=i —VOO 216894948517
756257800 V1303
216894948517
Thus, the first and second conditions for Hopf

bifurcation are fulfilled by applying the Hopf
bifurcation Theorem
( Guckenheimer & Holmes, 2013), and system (1)
displayes a Hopf bifurcation at the equilibrium point
E. m

We also, study the stability, direction and period of
periodic solution of system (1) at the equilibrium
point E(a, 0,0) via the normal form theory (Hassard
& Wan, 1978).

Theorem 3.4.
i.The Hopf bifurcation of system (1) at the
equilibrium point E(a, 0,0), when a = a; = —ﬂ +
2003 .

= is non-degenrate and subcritical. The perlod of

periodic solution and its characteristc exponent are

respectively
4079891710775285736627

P 199515313237517536901200
11753472814476305975771 V3

997576566187587684506000

2181257078293
6218326091536

I, = 15221689654211
2= 248733043661440

ii. The Hopf bifurcation of system (1) at the

equilibrium point E(a, 0,0), when a = a, = —% -
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200\/_

is non-degenrate supercritical. The period of

perlodlc solution and its characteristic exponent are

respectively
4079891710775285736627

BZ N 199515313237517536901200
11753472814476305975771+/3

997576566187587684506000
15221689654211 2181257078293

248733043661440 6218326091536

TZZ_

Proof. Since the arguments of the computation for
the case i1 and ii are very similar, we only prove case
i
At the equilibrium point E(a,0,0), the change of

variables  (X1,Y1,Z,) = (X —a,Y,Z) transform
system (1) into
X1 == Yl'
Y, =127, (13)
. (a-10) 3
Z “100 Z, + X1—5Y1+X12—
57 ., 2 .1 a 2
Eyl +521X1 5X121 100X1 Z.

Using the eigenvectors of Jacobian matrix J; as the
basis for a new coordinate system at the E(a,0,0),
370 | 2003

when a=a, =— I TR the eigenvector
u; = (1,1%\/130, —E)T, associated with 21, =
i@ and the eigenvector
3700 | 2000v3 25690000 1480000031
ug = (1,- 169 + 169 ' 28561 28561 )
associated with 1; = — ﬂ + 20009\/— define
0 1 1
V130 0 A
M = (vy,v1,v3) = 10 .
. 13 /
10
The transformation
Xq X;
Zy Zy
imply system (13) to
Xy =~ Y% 4 B (X,,Y,,2)),
¥, = sz +BE 2, (14)
. 3700 , 20003
Z,= (—179+ ) Z, + Fy(Xp, Yy, Z),



where
Fl((Xz; Yz'Zz) = )

—v/130(3781289+1956060 V3 I
161063152239444962 (2504580000 130\/§XZZZ -

297034400+/3Y,% — 4633473000 V130X,Z, +
501222965600 /3Z,Y, — 4682000000032, +
1375640565 X,* — 869742586000 Z,Y, +
82071914000 Z,2 —

26 (Y, + Z,)?(148000000 Z,V3 + 371293 Y, —

256900000 Z;)),
F,(X3,Y,,Z,) =
257271293+148000000 V3 ——
1238947324918807400 (2504580000 130\/§X2Z2 -

4633473000 vV130X,Z, — 297034400 V/3Y,* +
501222965600 v3Z,Y, — 46820000000 Z,%/3 +
1375640565 X, — 869742586000 Z,Y, +
82071914000 Z,* —

26 (Y, + Z,)?(148000000 Z,v/3 + 371293 Y, —

256900000 zz)) ,

F3(X3, Yy, Z3) =
_ 257271293+148000000 V3
1238947324918807400
4633473000 v130X,Z, — 297034400 Y,*/3 +
501222965600 Z,Y,v3 — 46820000000 v/3Z,% +
1375640565 X, — 869742586000 Z,Y, +
82071914000 Z,* —

26 (Y, + Z,)?(148000000 Z,v/3 + 371293 Y, —

256900000 zz)).

Next, the following quantities are evaluated at
a = a,, which followed a procedures proposed in
(Hassard & Wan, 1978). According to that
procedure, we obtain

1(0%F, |, 9%°F, .(62F2 aze)
911 =73 (axzz + aY,2 ti 9X,2 + av,2/) | —

(—84443422000 v3-186302634900)v130 N

17351595881360
. (856307414\/§ 119598028113 )
)

16684226809 1334738144720

_1{9%Fk  0%F 2 0%F, _H.(aze
Yoz =7 0X,2  0Y,2 9X,0Y, 9X,2

0%F, 2 0%F; )
dY,? X, 0Y,
(205444670000 v3-374084394900)v130 n

17351595881360
. (1885392586\/5

16684226809

261678028113 )
1334738144720/’
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(2504580000 VI30V3X,Z, —

+ (2

920 = 3\ 3x,2 7 av,2 9X,0Y, 9X,2

9°F, 2 0%F; ) _
Y52 0X,0Y,

(-205444670000 V3—374084394900)/130 n

17351595881360
. (1885392586\/§ 261678028113 )
)

16684226809 1334738144720
1(0d3%F 03F, 03F, 03F,
== 3 >+ +
8\ dx, 0X,0Y;

X209y,  9Y,3

i(63F2+ 93F, 03F; 63F1) _

0x,3 | 0X,0Y2  0x2ay, ov,.3/) )
14430000 V3 10033580427

16684226809 6673690723600
i (—586818000 V3-1134386700)v130

6673690723600

1 (62F1 0%F,; 0%F,

Some calculations gives

1 (0%F; ang)
hiy = 4 (axzz + av,2)

119598028113

1334738144720
856307414 /3
16684226809’

- 1(02F3 _0*F . 0%F ) _

20 7 4 \9x,2  9vy2 9X,0Y,

261678028113 1885392586 /3

1334738144720 16684226809 '

The solution of (9), here, is

(16)

8535402627381 49266305077 /3

b1 =— 133473814472000 1334738144720’
b0 = 1694505419369269375 V3
20 = - -

76736658937506744962
11742205887422026425

306946635750026979848

. 33645716739329585109
i V130( +
6138932715000539596960

33645716739329585109

6138932715000539596960
121407729953773099 /3

38368329468753372481 )

17)

Let

G 1 9%F 9%F, ( 9°F,
110 = 5\ 9x,0z, ' 8Y,07, 0X207

0%F .

ayzazz) -
. V130(558042995953700 v3-1058831006128765)
: 953036403783698

15651753618 V3
216894948517

140608808455
216894948517

)

(15)

ZANCO Journal of Pure and Applied Sciences 2022
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90
1[ %R 9%F, . 0%F,
G101 == - +1 +
2\ 0Xx,0Z, 0Y,0Z, 0X20Z,
9%F; ) _ 55632446382V3 | 353627076545
0Y,0Z, - 216894948517 216894948517
i V130(—589887202859900 V3+997272490905235)
953036403783698 !

921 = Gyo1P20 + 2 G110P11 + G21 =
70583235606156203458777188079403 v3

1280291822278239489913326086258000
6116325453106728706919124775959

64014591113911974495666304312900
iv130 (7565715578481254—236202372813457 V3

665751747584684534754929564854160
262580535937158194273969846947671 )

13315034951693690695098591297083200
(18)
Based on the above analysis, one can compute

_ i 2 |go2|?
C,(0) = 5(920911 = 21911l — — )T
4079891710775285736627

1
2921 = T 399030626475035073802400
11753472814476305975771 /3

1995153132375175369012000
. (207030432548035990932299 V130

41499185153403647675449600
3002825100444306598529 \/130\/5)
)

1037479628835091191886240

— Re(€1(0))

Ha = Re(1'(ao))
9886888325047 4148585707813 v3
 239166388136000  47833277627200 °

B, = 2Re(€1(0)) =

4079891710775285736627

199515313237517536901200
11753472814476305975771 /3

997576566187587684506000 ’ (19
Im(Cl(O)) + ﬂzlm(ll(ao))
Tz = - w
15221689654211

248733043661440

2181257078293
6218326091536

Since u, <0, B, <0 and 7, <0, then Hopf
bifurcation is subcritical and non-degenrate with
periodic orbit is unstable. Also the period of
bifurcating periodic solutions decreases, which
indicates that there is an orbitally unstable limit
cycles. m

It follows from Theorems 4.2 and 4.4 that three
periodic orbits bifurcating from the origin and
(a,0,0) for the set of initial condition given by
choosing initial condition(0,0.001,0) and the
periodic solutions occurs at the bifurcation values,
performing numerical illustration using Maple
software, as shown in Figure 1.
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Figure 1. The bifurcation periodic solution of

system (1) for the values of the parameter i. when
13 .. 370 200 370
a== ii. a=—-">4+"=+3 iii. a=—-"—>-

10 13 13 13

4. CONCLUSIONS

In this work, local bifurcations and stability of
cubic Jerk system (1) has been studied using
Sotomayor’s Theorem, Routh Hurwitz Criteria
and Hopf bifurcation. We start by analyzing the
transcritical bifurcation of system (1) at the
equilibrium points and we proved that this system
has only transcritical bifurcation at the origin
when a = 0. Finally, it has proved that Hopf
bifurcations occurs at equilibria points 0(0, 0, 0)

and E(a,0,0) whenazg and a=—%+
%\E (or a=—22—22V3), in which these

13 13
Hopf bifurcations are nondegenerate subcritical

and supercritical ~ (subcritical), respectively.



Moreover, we illustrated the results with a
numerical example.
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