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ABSTRACT 

Clustering assigns objects to clusters based on similarity, aiming to ensure that 

objects within the same cluster are similar and those in different clusters are 

dissimilar. Evaluating clustering quality is crucial and challenging. Thus, researchers 

have proposed clustering validation indices namely internal and external validation 

indices. Internal indices assess clustering quality using intrinsic information within a 

dataset. We focus on internal validation indices for their real-world applicability. In this 

paper, we have proposed a novel region-based internal validation (RCV) index. Our 

index incorporates the division of each cluster into three distinct regions which are the 

inner, middle, and outer regions. according to the clusters' center and their 

corresponding radius, we split each cluster into the aforementioned regions. The 

average distance is then computed for each region, and a penalty factor is applied to 

these average distances. By summing up the three penalized average distances, a 

Region Cluster Validation (RCV) score is obtained for each cluster. The RCV scores 

for all clusters are then summed together to yield an overall measure of cluster 

validity. A lower index value indicates better clustering quality. Experiment results on 

the synthetic and real-world datasets exhibit the usability and effectiveness RCV 

index.     
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1. Introduction 

Clustering algorithms are a widely-used 
technique in various fields of science (Jain et al., 
1999, Xie and Beni, 1991, Han et al., 2022). The 
purpose of clustering is to partition unlabeled 
data into separate groups based on their 
similarities and dissimilarities. The essence of the 
grouping is to uncover the underlying structure or 
patterns of a dataset (Jain et al., 1999) in such 
that data elements within a group are similar and 
in different groups are dissimilar. Since there is 
no common agreement on what constitutes 
quality clustering, therefore, assessing the quality 
of clustering results has become a challenging 
task. To address this issue, the researchers have 
attempted to develop and propose various 
clustering validation indices to evaluate the 
effectiveness of clustering algorithms. The sole 
aim of clustering validation measurements is to 
generate meaningful and valuable clusters (Jain 
et al., 1999, Halkidi et al., 2001) in a way that the 
performance of clustering algorithms is 
determined based on intra-cluster similarity and 
inter-cluster dissimilarity (Halkidi et al., 2001, Liu 
et al., 2013). As a result, obtaining the optimal 
number of clusters (Deborah et al., 2010). In the 
bellow, we briefly describe the two types of 
clustering validation indices (Arbelaitz et al., 
2013). Internal validation: it assesses the 
goodness of clustering results based on the 
intrinsic information that contains in the data 
itself. External validation: it depends on external 
information when evaluating the goodness of a 
clustering structure.  

The focus of our research is on internal 
validation measurement. Internal validation 
mainly depends on intrinsic information existing 
within the dataset to assess the quality of 
clustering results. The internal validation index is 
preferred over the external index because it does 
not require prior information on the classes or 
labels of a given dataset (Jain and Dubes, 1988, 
Halkidi et al., 2001). For this reason, the internal 
validation index is more realistic in real-world 
applications (Clarke, 1974, Hennig, 2015). It 
might be worth mentioning that the internal 
validation index directly relies on compactness 
and separation concepts. According to (Jain and 

Dubes, 1988, Zhao and Karypis, 2004) 
separation refers to the degree of dissimilarity of 
objects of different clusters (inter-cluster 
dissimilarity) whereas cohesion indicates the 
similarity of objects within a cluster (intra-cluster 
similarity).  

Despite numerous attempts in the recent 
decades to propose new internal validation 
indices including some common ones (Halkidi et 
al., 2001, Kim and Ramakrishna, 2005) and 
recent ones (Fu and Wu, 2016, Guo et al., 2016, 
Wang and Xu, 2019), based on our knowledge 
the literature, the field still lacks a simple and 
straightforward index that accounts for the region 
of clusters when evaluating clustering 
performance. Existing indices do not fully 
incorporate the notion of dividing the clusters into 
separate regions. Thus, we regard our suggested 
approach as an innovative index that considers 
the idea of cluster regions during the validation 
process and performance evaluation of clustering 
algorithms. Hence, we have labeled our 
proposed method as the Region-Based 
Clustering Validation (RCV) Index. 

Region-based clustering validation index split 
each cluster into regions. Firstly, we partition 
each cluster into three distinct regions, namely 
the inner, middle, and outer regions, based on 
their distance from the cluster centroid. We then 
compute the average distance of the data 
elements in each region using the Euclidean 
method (Bishop, 2006). To account for the 
varying importance of each region in determining 
the quality of the clustering results, we apply a 
penalty factor by multiplying the average 
distances of the inner, middle, and outer regions 
by one, two, and three, respectively. Notably, the 
outer region incurs the highest penalty due to its 
greater average distance from the centroid. 
Subsequently, we sum up the three penalty-
weighted distances to obtain the RCV score for a 
certain cluster, which serves as a measure of the 
cohesion of the cluster. The lower the index 
score, the better the clustering quality and 
cohesion.  

The objective of RCV is to assess and validate 
the clustering configuration quality. It is worth 
noting that the proposed index could be used 
specifically to measure the cohesion of clusters. 
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To exhibit the applicability and performance of 
our index we have conducted a series of 
experiments on both synthetic and real-world 
data. The results verify the effectiveness of RCV 
in validation clustering.  

The subsequent sections of this paper are 
organized as follows. In section two we review 
the current state of the art in the literature of 
internal validation indices including the most 
common ones to some recently proposed 
methods. In section three we have described the 
proposed index. In section four we have 
conducted an experiment on our index as well as 
performing the analytical experiment on the four 
common indices, then, a detailed finding is 
presented. Finally, in section five we conclude 
this paper.  

2.Related work 

In this section, we aim to provide a review of 
the most commonly used internal validation 
indices, as well as some recently developed 
ones that have undergone testing. To the best of 
our knowledge, these indices provide a 
comprehensive representation of validation 
measures across various disciplines. 

One of the earliest works in 1974 is the Dunn 
index which computes the ratio of the minimum 
inter-cluster and intra-clusters distances. A larger 
value indicates better clustering quality (Dunn, 
1974). The Dunn index is sensitive to noise and 
data dimensionality. Other works later in the 
same were published by (Caliński and Harabasz, 
1974). Calinski–Harabasz index calculated the 
ratio of inter-cluster and inter-cluster variance. 
The index is sensitive to large-scale datasets and 
it performs better when there are larger numbers 
of clusters. In 1975, Baker and Hubert proposed 
the Gamma index which examines the correlation 
between two different objects within the same 
cluster. The range of the index value is between 
zero to one. A higher value of the index indicated 
a better clustering configuration (Baker and 
Hubert, 1975). A balance between cluster sizes 
is preferable and the index might not perform 
ideally when the clusters are not extensively 
overlapped. The Silhouette index, which was 
proposed by Rousseeuw in 1987, compares 
compactness and separation. The range of the 

index value is between a negative one and to 
positive one in which a higher value indicates a 
better clustering quality (Rousseeuw, 1987). The 
dataset features such as scale, shape, and 
density might be an issue for the Silhouette 
index. In 1989, the Root-Mean-Square Standard 
Deviation was proposed by Sharma. The index 
computes the distance between data points and 
their corresponding centers. The computed value 
will be normalized by the standard deviation of 
the distance. The lower values represent better 
cluster configuration (Sharma, 1995). This index 
assumes that the data points are evenly 
distributed around their corresponding centroids 
and they work on simple shapes and data 
structures. The R Squared is also proposed by 
Sharma which measures the dissimilarity 
between clusters. The R Squared produces two 
different values which are one and zero where 
zero implies that there is no difference between 
clusters and one indicates otherwise (Sharma, 
1995). The R Squared index is sensitive to the 
size and distribution of the data points.  

In 2001, Halkidi and Vazirgiannis proposed the 
S_Dbw index which is well suited for a dataset 
that has compact and well-separated groups. 
The cluster variance and density are used to 
compute both cluster compactness and 
separation respectively (Halkidi et al., 2001). The 
S_Dbw index might not perform well with large 
data sizes and the objects are spherical. Chou et 
al. introduced the CS index in 2004. The CS 
index measures both compactness and 
separation through cluster diameter and nearest 
neighbor distance respectively. The smallest 
value of SC indicates a higher quality of 
clustering configuration (Chou et al., 2004). This 
index has high computational overload and it is 
sensitive to noise. In 2007, Saitta et al. 
introduced the score function index. it depends 
on the within and between class distances 
concepts. This index is capable of detecting a 
lack of division in a dataset (Saitta et al., 2007). 
The score function index is sensitive when 
encountering large-scale datasets and arguably 
produces high computational overload. The Point 
symmetry index was proposed by 
Bandyopadhyay and Saha in 2008. The index 
computes clustering configuration based on the 
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similarity of the points (Bandyopadhyay and 
Saha, 2008). It is capable of identifying both 
convex and nonconvex clusters regardless of 
clusters’ sizes and shapes. In 2010, Gurrutxaga 
et al. proposed the SEP/COP index which 
assesses the quality of hierarchical clustering. To 
do so the index depends on the number of 
clusters and inter-cluster distances. The index is 
partially affected by noise (Gurrutxaga et al., 
2010). A crisp clustering validation index was 
proposed by Lago-Fernández and Corbacho in 
2010. It measures the average normality of 
clusters. To determine the normality of a cluster 
the negentropy is used (Lago-Fernández and 
Corbacho, 2010). The index needs extensive 
computational power and might be solid to noise 
and outliers.  

To account for clusters with significant 
variations in size and density in 2011, Žalik and 
Žalik introduced the SV-index. The index 
calculates inter-cluster and intra-cluster distance 
(Žalik and Žalik, 2011). The index might perform 
better when it deals with different cluster shapes. 
In 2016, Fu and Wu proposed an index that 
assesses the clustering results of high 
dimensional Boolean data. It can be applied to 
categorical data that could be transformed into 
Boolean data. The data are categorized into 
three classes to represent zero, one, and not the 
same for all the objects in the dataset (Fu and 
Wu, 2016). It might not be easy to well categorize 
complex datasets and structure them into three 
classes. In 2017, in an attempt to develop a 
simple and robust validation index, Jauhiainen 
and Kärkkäinen proposed the kCE index. The 
authors claim that the index has a maximum 
coverage (Jauhiainen and Kärkkäinen, 2017). 
The index can detect the absence of data 
partitioning which means that the dataset 
comprises a single cluster. The structural 
dissimilarity index is proposed by Guo et al. in 
2017 to validate clusters of categorical 
sequences. The method utilizes a probabilistic 
approach to evaluate the structure dissimilarity 
between the sequences. The index computes 
both within-cluster compactness and between-
cluster separation (Guo et al., 2016). In 2019, 
Wang and Xu proposed the Peak Weight Index 
which incorporates the data separation and 

aggregation features of the Silhouette and 
Calinski-Harabasz indices and computes the 
highest value of the two indices as a reference 
point to assign a suitable weight within a specific 
range (Wang and Xu, 2019). In the same year, 
Misuraca, Spano, and Balbi proposed the BMS 
index for document clustering. This index is an 
improved version of the Dunn index in which 
cosine dissimilarity is applied to the original Dunn 
index to assess the quality of clustering quality 
(Misuraca et al., 2019). In 2021, Ncir et al. 
introduced the Scalable Dunn index. it computes 
the Dunn index on a scalable and parallel 
structure. To do so, multiple nodes will be utilized 
to distribute the computational process. To 
reduce computational overhead a small sampling 
technique will be used when dealing with a large 
dataset (Ncir et al., 2021).  

3. Proposed Method  

We have proposed a novel region-based 
internal clustering validation index. Our approach 
is based on dividing a cluster into regions. 
Hence, we have named the proposed method 
the Region-based Cluttering Validation index. To 
do so, we partition each cluster into three distinct 
regions, namely the inner, middle, and outer 
regions, based on their distance from the cluster 
centroid. We have decided to divide into three 
regions for two reasons. Firstly, the size of the 
clusters is small. Secondly, dividing a cluster into 
three regions requires less computational 
overhead and time. It is worth to consider that 
when one deals with large scale data, the 
number of regions could vary based on the data 
requirements.  To calculate the distance or 
boundary of each region, we compute the 
average distance of the data elements in each 
region using the Euclidean method (Bishop, 
2006) in which the distance between the centroid 
and data points of corresponding clusters will be 
computed. After that, the maximum distance will 
be selected as the cluster’s radius. The 
computed maximum distance will be divided by 
three to generate the three regions. Figure 1 
illustrates the concept of partitioning the region of 
clusters. 
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Figure 1: dividing a cluster into three regions 

 
To account for the varying distance indicator of 
each region, we apply a penalty factor by 
multiplying the average distances of the inner, 
middle, and outer regions by one, two, and three, 
respectively. These penalty factors are 
hyperparameters that are manually tuned. 
Notably, the outer region incurred the highest 
penalty due to its greater average distance from 
the centroid. Subsequently, we sum up the three 
penalty-weighted distances to obtain the RCV 
score for a certain cluster, which serves as a 
measure of the cohesion of the cluster. The 
lower the RCV score, the better the clustering 
quality and cohesion. It is worth mentioning that 
RCV is capable of validating diverse clustering 
configurations that might include numeric and 
multi-dimensional elements.  
The algorithmic steps of the RCV approach are 
described below points: - 

Step 1: Using the Elbow method (Thorndike, 
1953) to specify the number of cluster k.  
Step 2: Clustering with various clustering 
algorithms to perform data labeling.  
Step 3: Define the centroid of the obtained 
clusters. 
Step 4: Using the Euclidean method [28] to find 
the distance between the centroid and points for 
each cluster. Then, select the maximum distance 
as the cluster’s radius. The Euclidean method is 
calculated according to the following equation. 

ⅆ(a, b) = √∑(a − b)2

n

i=1

 

where a and b are two data points of the dataset: 
Step 5: Partition each cluster according to its 
radius into three distinct and equivalent regions 
namely inner, middle, and outer regions.  
Step 6: Compute the average distance for the 
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inner, middle, and outer regions. 
Step 7:  Measure the RCV score which computes 
the cohesion value for each cluster. The RCV 
score is calculated according to the following 
equation.  
 

Total RCV = ∑ ∑ avg ⅆ(ri) ∗ w

3

i,w=1

c

 

Where: r=region, i= region number, avg d is 
average distance and w=weight which equals to 
1,2,3 according to the inner, middle, and outer 
regions respectively. And c is a cluster. 
Figure 2 illustrates the algorithmic steps of the 
RCV index in detail.  

 

Figure 2: RCV steps 

4.Results and Findings 

We have categorized our results and findings 
into two major sections. The first section 
encompasses the results of four popular indices, 
namely Dunn, Davies-Bouldin, Calinski-
Harabasz, and Silhouette indices which 
hereinafter we refer them as the four common 
indices for the purpose of this paper. To ensure 
inclusivity in our findings, we have divided this 
section into two subsections based on the 
dataset utilized. Firstly, we evaluate the 
performance of k-means and fuzzy c-means 
clustering algorithms on a synthetic dataset. 
Then, we employ the same indices to evaluate 
the performance of the clustering algorithms 
using a real dataset.  

In the second section, we have divided our 
experiment into three subsections to assess the 
performance of k-means and fuzzy c-means 
clustering algorithms by using our proposed 
method.  In the first subsection, we use one 
synthetic dataset to validate the clustering 
results. In the following subsection, we have 
used two synthetic datasets. In each dataset 
either well compacted or well separated. In the 
final subsection, we use the IRIS dataset to 
validate clustering results.  

It is worth mentioning that for the real data we 
have used the IRIS dataset. IRIS dataset is 
available online for experimental purposes on the 
Machine Learning Repository, Center for 
Machine Learning and Intelligent Systems from 
the University of California Irvine. In the following 
sections, we present the results and findings of 
our experiment.  

4.1. Validating the performance of k-means 
and fuzzy c-means by using four common 
indices 

In this section, we attempt to validate the 
performance of k-means and c-means clustering 
algorithms by using the four common indices. As 
previously mentioned in the first stage we use a 
synthetic dataset followed by a real dataset. The 
following subsection presents more details about 
our findings. 
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4.1.1. Using Synthetic Data to validate k-
means and fuzzy c-means 

We created a two-featured dataset in order to 
assess the performance of k-means and fuzzy c-
means clustering algorithms by using the four 
common indices. We used k-means and Fuzzy 
C-means clustering algorithms to classify the 
dataset. Figure 3 shows the representation of the 
clustering of the dataset.    

Typically, the aforementioned indices are 
experimented with the aim of obtaining an 
optimal number of clusters for a given k value.  

According to the assessment conducted using 
the k-means algorithm, the results yielded by the 
Dunn index indicated that the dataset contains 
five clusters, which is a misleading indication. We 
are already aware that the dataset only 
comprises two clusters. Despite this anomaly, the 
remaining clustering indices performed well, 
correctly identifying the appropriate number of 
clusters, which is two. Table 1 shows the results 
of the assessment for the k-means algorithm. 

We applied the same four indices to evaluate 
the performance of the fuzzy c-means algorithm. 
Notably, the Dunn index performed slightly better 
in comparison to its results when applied to the k-
means algorithm. However, it yielded a slight 
discrepancy as it indicated the presence of three 
clusters rather than two. Despite this minor 
anomaly, the remaining indices accurately 
identified the optimal number of clusters, which is 
two. Table 2 presents the results of the 

assessment.  
In general, when k is set to 2 for both the k-

means and c-means algorithms, they perform 
similarly, generating comparable scores across 
all indices, with only minor exceptions observed 
in the Dunn index. The unsatisfactory 
performance of the Dunn index could be 
attributed to its susceptibility to noise and outliers 
that may exist in the dataset. Moreover, it can be 
challenging to definitively determine which 
algorithm outperforms the other. Thus, we have 
concluded that both clustering algorithms are 
equally suitable for this type of dataset. To 
further illustrate the findings, the charts are 
presented in Figure 4 

 

Figure 3. Synthetic dataset 

 

Figure 4. Analysis the 4 indices for k-means and fuzzy c-means in synthetic dataset 
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Table 1.  Results of k-means on synthetic 
dataset 

 
Table 2.  Results of fuzzy c-means on synthetic 
dataset 

4.1.2. Using Real Dataset to validate k-means 
and fuzzy c-means 

In this subsection, an IRIS dataset is used to 
evaluate the performance of the k-means and 
fuzzy c-means clustering algorithms. To do so, 
the four common indices are used. The outcome 
of clustering algorithms is depicted in Figure 5. 
Based on the results, it appears that k-means 
outperforms fuzzy c-means by a small margin 
when using the IRIS dataset. Among the various 
values of k when k is equal to four can be 
considered the optimal choice for k-means 
clustering as it generates the highest scores for 
both the Calinski-Harabasz and Silhouette 
indices. However, in terms of the Dunn and 
Davies-Bouldin indices, the best performance is 
achieved when k equals three, which can be 
regarded as an optimal value. The outcomes of 
the evaluation of the k-means and fuzzy c-means 
algorithms are presented in Table 3 and Table 4 
The visual representation of the analysis and 
findings described above can be observed in 
Figure 6 
 
 
 
 

Table 3. Results of k-means on IRIS dataset 
k Dunn Davies-

Bouldin 

Calinski-

Harabasz 

Silhouette 

2 0.076506 0.404293 513.924546 0.681046 

3 0.098807 0.661972 561.627757 0.552819 

4 0.136543 0.780307 530.765808 0.498051 

5 0.082339 0.805965 495.541488 0.488749 

6 0.082903 0.925770 473.515454 0.367846 

 

Table 4. Results of fuzzy c-means on IRIS 
dataset 

 

 

Figure 5: iris dataset 

k Dunn Davies-
Bouldin 

Calinski-
Harabasz 

Silhouette 

2 0.036463 0.527181 781.473532 0.632042 

3 0.022625 0.925935 595.861747 0.529001 

4 0.008474 0.826952 532.952627 0.492097 

5 0.078445 0.772733 488.657698 0.508589 

6 0.032173 0.955061 478.566068 0.345388 

k Dunn Davies-
Bouldin 

Calinski-
Harabasz 

Silhouett
e 

2 0.021747 0.528163 781.181973 0.631880 

3 0.024658 0.937837 590.887466 0.518372 

4 0.019902 1.082470 485.587450 0.343317 

5 0.012626 0.997604 469.123769 0.328814 

6 0.025209 0.981206 471.774371 0.334467 

k Dunn Davies-

Bouldin 

Calinski-

Harabasz 

Silhouette 

2 0.076506 0.404293 513.924546 0.681046 

3 0.104973 0.669247 560.223502 0.549518 

4 0.037346 0.863877 415.325179 0.412729 

5 0.082339 0.816398 494.504045 0.487436 

6 0.060302 0.926120 473.379885 0.364001 
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Figure 6: Analysis the 4 indices for k-means and fuzzy c-means in Iris dataset

4.2. Validating the performance of k-means 
and fuzzy c-means by applying RCV 

In this section, we have divided our experiment 
into three subsections to assess the performance 
of k-means and fuzzy c-means clustering 
algorithms by using our proposed method.  In the 
first subsection, we use one synthetic dataset to 
validate the clustering results of the clustering 
algorithms. In the following subsection, we have 
used two synthetic datasets. In each dataset 
either well compacted or well separated. In the 
final subsection, we use the IRIS dataset to 
validate clustering results. 

4.2.1. Using a synthetic dataset to validate k-
means and fuzzy c-means  

We have used the same synthetic dataset as in 
section (4.1.1). To evaluate the clustering 
performance of k-means and fuzzy c-means, we 
use the RCV index. RCV divides the cluster into 
three distinct regions: the inner, middle, and 
outer regions, as shown in Figures 7 and 8. Our 
findings revealed that both the k-means and 
fuzzy c-means clustering algorithms produced 
satisfactory results, with only minor discrepancies 
between them. Because as shown in Figure 8 
after applying fuzzy c—means, one data point 
will be added to cluster1 the RCV Cohesion 

score is changed from 4.352 to 7.793. 
For cluster 1, the k-means algorithm computes a 
lower cohesion score and average distance 
across all three regions as compared to the fuzzy 
c-means algorithm. Therefore, k-means appears 
to be a more suitable option for the given 
clustering scenario. The results are presented in 
Table 5. 
For cluster 2, both algorithms have produced 
similar results, with fuzzy c-means having a 
slightly lower cohesion and average distance in 
the inner and middle regions. However, k-means 
has a larger radius and therefore may be well 
suited for identifying outliers in this cluster. The 
results are shown in Table 6. 
For more clear illustration the previous results 
are graphed in Figure 9 the cohesion score for 
each cluster is presented for each clustering 
algorithm namely the k-means and fuzzy c-
means.  
Table 5. RCV for cluster1 in synthetic dataset 

indicators k-means Fuzzy c-
means 

Average distance for 
inner region 

0.247 0.343 

Average distance for 
middle region 

0.577 0.845 

Average distance for 
outer region 

0.983 1.920 

RCV Cohesion score 4.352 7.793 
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Table 6. RCV for cluster 2 in synthetic dataset 
 k-means Fuzzy c-means 

Average distance for 
inner region 

0.409 0.405 

Average distance for 
middle region 

0.925 0.922 

Average distance for 
outer region 

1.610 1.576 

RCV Cohesion score 7.091 6.977 

 
Figure 7. RCV after apply k-means clustering 

 
Figure 8. RCV after apply fuzzy c--means 
clustering 

 

Figure 9: RCV Cohesion score for k-means and 
fuzzy c-means 

4.2.2. RCV Discriminatory Analysis for 
Compacted and Well-Separated Datasets  

We have generated two synthetic datasets by 
using Python namely data1 and data2. In the first 
dataset (data1), we deliberately arranged the 
objects to be well-compacted. Conversely, in the 
second dataset (data2), the clusters exhibit 
significant distribution and separation of their 
objects, as depicted in Figure 10. Both data1 and 
data2 comprise two clusters and random values 
are chosen for cluster coordination.   
The clusters of the data1 are generated without 
the scaling factor. Each cluster is centered 
around a different mean point. The first cluster of 
data1 is centered around [3,3,3] and the second 
cluster is centered around [6,6,6]. The clusters of 
data2 are generated by a scaling factor 4 and 
shifted by a specific mean point for each cluster 
in which the first cluster is centered around [3, 3, 
3], while the second cluster is centered around 
[20, 20, 20]. 
The experimental results for both the k-means 
and fuzzy c-means algorithms, as presented in 
Table 7, demonstrate a higher RCV score for 
data2, while the cohesion score for data1 is 
notably lower. This observation clearly 
distinguishes the compactness of clusters in 
data1 and the separation of clusters in data2 
which is considered a significant observation.  
The RCV scores from Table 8 reveal that the k-
means and fuzzy c-means algorithms exhibit 
similar performance in terms of RCV score for 
data1. This suggests that both algorithms 
effectively compute the compactness of the 
clusters. Conversely, for data 2, a notable 
disparity in RCV scores emerges. The k-means 
algorithm yields a lower RCV score compared to 
the fuzzy c-means algorithm. This disparity 
indicates that the k-means outperforms the fuzzy 
c-means in assessing the cohesion of the 
clusters. It is worth noting that a lower RCV score 
indicates a more accurate assessment of cluster 
cohesion. Figure 11 illustrates the results for both 
clusters in each dataset. 
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Figure 11: results for both clusters in each dataset 

Table 7. RCV score for both datasets 
Clustering 
algorithm 

Data1 total RCV 
cohesion 

Data2 total 
RCV 

cohesion 

K-means 24.635 96.912 

Fuzzy c-means 24.504 98.442 

Table 8. RCV for cluster 1 in real dataset 
 k-means Fuzzy c-

means 

Average distance for 
inner region 

0.411 0.404 

Average distance for 
middle region 

0.779 0.786 

Average distance for 
outer region 

1.420 1.528 

RCV Cohesion score 6.228 6.561 

4.2.3. Using real data to validate k-means and 
fuzzy c-means  

In this subsection, we have evaluated the 
performance of the two clustering algorithms by 
using the IRIS dataset. We have found that the 
cohesion scores produced for k-means and fuzzy 
c-means algorithms are different. Fuzzy c-means 
have scored slightly higher value, hence, is 
considered less satisfactory. Therefore, k-means 
outperforms fuzzy c-means in terms of our 
measurement for cohesion value.  
As demonstrated in Figures 12 and 13, three 
distinct clusters were identified using k-means 

Figure 10: Compacted and Well-Separated Datasets 
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and fuzzy c-means algorithms, after applying the 
RCV method.  

For cluster 1, both k-means and fuzzy c-means 
algorithms generated similar average distances 
for the three regions. However, in terms of 
cohesion score, k-means computed a slightly 
lower score, indicating higher cluster 
compactness. The results are presented in Table 
8.  

For cluster 2, both algorithms have produced 
similar values for cohesion and average distance 
for each region which indicates that the clusters 
are explicitly and consistently defined across 
both k-means and fuzzy c-means algorithms. The 
results are shown in Table 9.   

For cluster 3, the k-means algorithm has a 
lower cohesion value and smaller radius which 
means that the cluster is tightly packed together 
and well-defined compared to fuzzy c-means. 
The results are shown in Table 10. 

The results of the previous tables are depicted 
in Figure 14 for a clearer presentation. By using 
the RCV method we have clearly differentiated 
between k-means and fuzzy c-means algorithms 
for each cluster.  
                                                                      
Table 9. RCV for cluster 2 in real dataset 

 k-means Fuzzy c-means 

Average distance 
for inner region 

0.281 0.269 

Average distance 
for middle region 

0.573 0.559 

Average distance 
for outer region 

1.013 1.013 

RCV Cohesion 
score 

4.466 4.427 

 
Table 10.  RCV for cluster 3 in real dataset 

 k-means Fuzzy c-means 

Average distance for 
inner region 

0.339 0.391 

Average distance for 
middle region 

0.708 0.730 

Average distance for 
outer region 

1.298 1.337 

RCV Cohesion score 5.649 5.861 

 

 

Figure 12: RCV after apply k-means clustering 
for Iris dataset 

 
Figure 13: RCV after apply fuzzy c-means 
clustering for Iris dataset 

 

Figure 14: RCV Cohesion score for k-means and 
fuzzy c-means 
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Conclusions  

In conclusion, evaluating clustering quality 
remains a challenging task. There is no 
consensus or guarantee among researchers to 
agree on a credible and reliable validation index. 
Yet, they acknowledge that the internal validation 
index is more applicable to real-world scenarios 
as it depends on the intrinsic information of a 
dataset when assessing or evaluating clustering 
configuration. For this reason, we have focused 
on internal validation indices. In an 
unprecedented attempt, we have proposed a 
novel region-based clustering validation 
approach under the name of the RCV index. 
RCV considers each cluster as the regions of 
data namely inner, middle, and outer regions. 
RCV relies on a penalty factor to define the 
boundaries of each region and its significance in 
clustering configuration. Then, we compute the 
RCV score to determine the clustering cohesion 
for each cluster to clarify the clustering results. 
Based on our experimental results obtained from 
both synthetic and real-world datasets, we have 
derived the following findings. Firstly, the 
validation process of the RCV index is more 
efficient in terms of time and computational 
overhead compared to the four commonly used 
indices. This advantage stems from RCV's ability 
to determine a single K value using the Elbow 
method, eliminating the need for a predefined set 
or sequence of K values. Furthermore, RCV 
demonstrates superior accuracy and precision in 
detecting subtle differences in clustering 
formations produced by the k-means and fuzzy c-
means algorithms. In other words, RCV is highly 
sensitive to small changes or variations in the 
clustering results. This is evident through the 
emergence differentiations observed in the RCV 
scores. Lastly, our experiments on synthetic 
datasets have shown that the distance or 
proximity between clusters does not significantly 
impact the RCV value or the clustering validation 
process. However, the standard deviation of the 
clusters does affect the validation process. 
In future work, we attempt to use RCV in an 
unsupervised classification environment, using it 
in different applications and data analysis. More 
precisely we intend to work on the separation 
feature of the index and then compare its performance with 

the four commonly used indices.  
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