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A B S T R A C T: 
     Accurate prediction of surface soil properties is crucial for agricultural and environmental purposes. This study aimed to utilize 

geoinformatics approaches and Landsat OLI-8 data to predict specific physicochemical properties of the surface soil in 

Sulaimaniyah, Kurdistan Region of Iraq (KRI). It also examined the statistical relationships between these properties and spectral 

reflectance, vegetation cover, soil/vegetation moisture contents, and elevation. The study made use of the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as seven bands of the OLI image for the 

statistical analysis. The results demonstrated a statistical connection between organic matter (O.M.) and vegetation cover based on 

NDVI. It was observed that the northern parts of Sulaimaniyah exhibited dense vegetation, albeit covering a small area. Generally, 

mountainous regions had a higher proportion of canopy cover compared to other parts of the arid zone, with moisture availability 

being the most influential factor on vegetation. Moreover, the majority of the research area showed the highest CaCO3 content 

and a significant negative relationship was found between vegetation (NDVI) and soil moisture (NDMI) with organic matter 

(O.M.) and clay. Using geoinformatics datasets and techniques proved valuable in identifying, mapping, and investigating specific 

surface physicochemical properties in the study area. 
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1. INTRODUCTION : 

 

Methods for rapid and accurate 

determination of physiochemical soil properties 

are vital for quantitative land management 

assessments and ecological modeling studies 

(Nawar et al., 2015). Soil analyses are expensive, 

and dense sampling is obligatory to sufficiently 

characterize the spatial variability of an area, 

making broad-scale quantitative evaluation hard 

(Lutes et al., 2006). 

 

 

 

Furthermore, the traditional method of soil 

analysis and interpretation by chemical treatment 

is costly, time-consuming, and environmentally 

damaging, mainly when the survey is performed 

on a national, regional, or global scale (Vaudour et 

al., 2015). Geo-informatics is a modern discipline 

of science that integrates the acquisition, 

modeling, analysis, and management of spatially 

referenced data. The majority of Geo-informatics 

involves the application of Remote Sensing (RS), 

Geographical Information Systems (GIS), and 

Global Positioning System (GPS) technologies 
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(Senanayake et al., 2020). It is vital to map soil 

properties with effective tools, and the GIS has 

been one of the most useful tools throughout the 

twenty-first century. In GIS, numerous 

interpolation techniques are available. These 

methods generate new data points within the range 

of a discrete set of known data points gathered by 

field sampling. Consequently, it is possible to 

produce raster or grid maps for soil properties 

using various interpolation methods in GIS 

(Eskandari Dameneh et al., 2021).  

GIS permits several modifications, such as 

map measurers, map overlay changes, geographic 

design, and database management (Nanni et al., 

2012). GPS is a space-based system that provides 

accurate location and time information in all-

weather situations, at all times, wherever on or 

near Earth, when and where there is a clear line of 

sight to at least four GPS satellites. It offers 

locational information (latitude, longitude, and 

elevation). On the other hand, technological 

developments in remote sensing picture 

acquisition enable the collection of high-

resolution images, which help determine soil 

characteristics, monitoring degradation, and 

estimating natural resource availability (soil, 

vegetation, and water bodies). 

Remote sensing depends on observing 

spectral changes in the energy reflected or emitted 

by objects or features on Earth. In other words, 

remote sensing aids researchers in their search for 

variations in the reflected energy of objects 

(Wodaje, 2016), which is the origin of 

multispectral remote sensing (Kercival, 2015). 

Remote sensing data is an unequaled source of 

consistent spatial data for experts, while GIS 

permits the modeling and creation of more precise 

maps. Therefore, it is vital to investigate the 

potential relationships between soil characteristics 

and satellite image digital number (DN) values. It 

has been investigated as an alternate method for 

determining soil parameters(Hartemink, 2016; 

Hayes and Cohen, 2007; Nawar et al., 2015). 

Remote sensing provides unique capabilities for 

deep insight essential for analyzing, making 

decisions, and regulating environmental processes. 

Experimental models are crucial for associating 

field-measured variables to remotely sensed data, 

and regression analysis is a common empirical 

method for integrating these two forms of data to 

generate continuous estimates of environmental 

variables (Vicente Barros and Christopher B. 

Field, 2012). Several studies have demonstrated 

that maps of mineral composites, such as ferrous 

minerals, iron oxide, and clay minerals, may be 

created using GIS, Landsat-7 ETM+ images, and 

indices (Dogan 2008, 2009). Other studies, such 

as (Abuelgasim and Ammad, 2019; Shabou et al., 

2015), have also built models for predicting soil 

properties from spectral data, finding a 

quantitative correlation, and employing field and 

laboratory instruments. Iraq is one of the Middle 

East's most significant agricultural product-

consuming nations, mainly for wheat, rice, 

vegetables, and fruits.  

Therefore, to boost the local agricultural 

industry, proper land use planning is required 

(Razvanchy, 2008). A database for soil 

characteristics and features is essential to 

agricultural planning. Traditional soil analyses 

have played a vital role in the soil evaluation 

process as part of the soil evaluation procedure 

(Nawar et al., 2015). Current procedures include 

excavating holes, collecting soil samples, and 

preparing them for chemical and physical 

laboratory analysis, but this method for analyzing 

soil samples is expensive, time-consuming, 

relatively slow, and produces chemical waste that 

must discard. The electromagnetic radiation 

(EMR) that strikes the earth's surface interacts 

with objects and is reflected, absorbed, and/or 

transmitted in proportion to their physical, 

chemical, and biological properties (Akbari et al., 

2021). Several elements, including particle size, 

soil structure, water content, surface rugosity, 

organic matter content, carbonate-based minerals, 

quartz, and iron oxides, contribute to the soil's 

spectral reflectance. Several soil characterization 

techniques utilizing soil reflectance have been 

developed (Al-Quraishi et al., 2019). 

Due to the availability of more efficient 

and cost-effective technology, soil spectral 

characterization is now widely employed. Despite 

this, soil detection, categorization, and 

discrimination are the most common applications 

of this approach (Qader et al., 2021). Using 

spectral analysis to assess soil's chemical and 

physical characteristics has received little 

attention, and there are distinctions between 

laboratory data and remote sensing data. 

Nevertheless, a few inconclusive experiments 

assess soil characteristics using satellite sensor-

based information. The remotely sensed data 

reduces atmospheric and geometric interference 
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(Red, 2006; Yaghoobi and Zargar, 2012). The aim 

of this study: 

The general objective of this study is to setup a 

relationship between the soil spectral properties 

(Landsat-8 images reflectance with the chemical 

and physical characteristics of the soils for some 

sites in the Iraqi Kurdistan region. The specific 

objectives are to: 

1. Estimating the statistical relationships 

among the spectral soil properties (using the 

Landsat-8 images and Spectroradiometer 

reflectance), chemical, and physical characteristics 

for the soil samples of the study area. 

2. Predicting some of the chemical and 

physical characteristics of the soil in the study 

area. 

 

2. MATERIALS AND METHODS  

2.1. THE STUDY AREA 

Sulaymaniyah, situated in northeastern 

Iraq, is the largest governorate within the KRI. It 

shares its borders with Iran and is located at 

geographic coordinates 35°33'40" N and 

45°26'14" E. The governorate comprises ten 

districts, with the center of Sulaymaniyah itself 

situated at an elevation of approximately 830 

meters above sea level. To the north, west, and 

south of Sulaymaniyah, four Iraqi governorates 

border it, namely Erbil, At-Ta'mim, Salah ad-Din, 

and Diyala. The study area (Fig. 1) comprises all 

of Sulaimaniyah Governorate, comprising 15 

districts: Sulaimaniyah, Qaradagh, Sharazure, 

Saidsadiq, Penjwin, Halabja, Darbandikhan, 

Kalar, Khanaqin, Kifri, Chamchamal, Dukan, 

Sharbazher (Mawat), Ranya, and Pishdar. The 

study area is bordered on the east by Iran, the west 

by Kirkuk Governorate, the southwest by 

Salahalddin Governorate, and the south by Diyala 

Governorate. 

2.1.1 Physiography of the study area 

The KRI mountains are within the larger 

Zagros Mountains range, extending into Iran. 

These mountains are characterized by their fertile 

plains, plentiful water sources, and picturesque 

scenery, with several rivers traversing the region. 

The Great and Little Zab rivers flow from east to 

west, adding to the distinctiveness of this area. In 

contrast to the eastern part, the western and 

southern regions of the KRI display a relatively 

smoother topography, featuring rolling hills and 

sporadic flat plains (Razvanchy, 2008). 

 

 
Fig1: Location map of the study area in the KRI. (A); The 

map of the meteorological stations and the geographical 

distribution of annual rainfall (mm/year) in Sulaymaniah for 

24 years (B); Digital Elevation Model (DEM); and(C) 

Location map of soil sample District numbers: 1, 

Sulaimaniyah; 2, Qaradagh; 3, Sharazure; 4, Saidsadiq; 5, 

Penjwin; 6, Halabja; 7, Darbandikhan; 8, Kalar; 9, 

Khanaqin; 10, Kifri; 11, Chamchamal; 12, Dukan; 13, 

Sharbazher (Mawat); 14, Ranya; 15, Pishdar. 

 

2.1.2 Climate of the study area 

In general, the climate of the studied 

region is characterized by harsh conditions with 

considerable temperature variations between day 

and night and winter and summer. In the summer, 

the daily temperature at the southern boundaries 

of the governorates exceeds 45 °C. At night, 

temperatures fall below 20 °C in the northern 

regions, and winter daytime temperatures range 

from approximately -15°C to approximately 15°C. 

Accordingly, the climate of the study area has 

been designated as continental semiarid. In other 

words, summer is hot and dry, whereas winter is 

chilly and wet. Spring and fall have shorter 

seasons than summer and winter (Al-quraishi and 

Negm, 2019).  
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Table (1) The monthly air averages temperature in Sulaimaniyah for the years (2000-2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table (2) The monthly rainfall in the study area for the hydrological year (2000-2021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Months 

YEARS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2000 9.5 16.6 18.5 30.2 38.9 47.8 56.6 52.9 44.5 36.8 23.0 14.4 

2001 12.4 15.1 24.5 28.7 36.6 48.4 53.0 52.5 45.8 40.2 21.6 14.2 

2002 9.0 15.7 22.8 24.5 36.7 46.4 51.7 49.9 45.6 40.8 23.9 11.1 

2003 11.4 11.3 16.7 27.8 38.6 46.7 51.6 53.3 44.2 39.8 22.2 13.8 

2004 11.2 12.8 24.5 26.7 34.2 46.3 51.0 50.6 46.6 40.5 20.2 12.4 

2005 10.3 11.5 22.0 30.1 39.0 47.3 54.4 51.7 47.5 38.7 23.9 20.2 

2006 9.3 14.3 24.1 30.0 38.4 49.9 51.7 55.6 45.7 40.1 21.6 13.2 

2007 9.7 15.1 23.2 24.8 41.6 48.9 52.3 52.3 47.6 42.1 25.3 15.3 

2008 7.0 13.2 28.0 35.2 38.8 48.0 53.4 55.1 46.5 39.5 23.7 16.4 

2009 11.9 17.0 20.4 26.5 38.8 46.9 51.7 50.7 42.4 37.3 21.9 16.6 

2010 14.9 17.5 24.5 28.8 37.5 49.6 54.1 54.9 49.6 41.7 29.0 20.3 

2011 10.9 14.1 21.7 28.3 37.1 48.3 54.4 52.6 45.4 37.6 18.5 16.6 

2012 10.5 12.8 16.3 32.2 40.1 49.4 53.5 53.8 47.4 41.4 25.7 16.5 

2013 12.0 17.9 23.4 31.7 38.0 48.2 53.4 52.4 44.6 36.6 24.5 12.6 

2014 12.3 16.2 22.4 29.7 40.1 48.5 53.5 54.4 45.8 38.3 22.3 17.9 

2015 13.0 17.4 22.2 29.2 40.6 49.1 56.1 55.8 49.3 41.3 22.7 14.3 

2016 11.6 19.3 21.9 29.9 39.0 53.5 54.9 56.4 46.0 38.4 25.1 12.6 

2017 11.5 11.4 20.5 29.8 39.7 48.4 55.7 55.6 49.9 39.7 24.3 20.2 

2018 13.0 17.6 26.7 30.2 36.7 48.0 54.2 53.2 47.9 41.2 22.4 15.3 

2019 11.8 15.2 17.3 24.4 39.5 50.6 52.1 54.5 46.5 40.5 24.7 17.2 

2020 12.1 13.5 23.0 28.9 40.1 48.2 55.3 51.5 50.0 41.6 26.1 18.2 

 Location No. 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1999 -2000 388.4 274.0 396.9 274.0 384.0 393.9 289.6 308.8 268.4 192.9 214.5 379.4 274.0 331.1 325.0 

2000 -2001 524.3 550.5 603.7 366.4 693.2 448.3 315.9 317.0 416.0 285.2 416.3 463.1 462.9 616.8 527.6 

2001 -2002 782.7 898.2 732.8 738.9 1281.9 851.9 886.1 432.2 485.8 287.4 543.2 721.6 925.5 975.2 985.5 

2002 -2003 880.8 924.8 851.6 647.3 1441.1 779.5 783.5 277.5 390.5 173.1 591.9 750.7 914.1 1003.7 1120.7 

2003 -2004 852.5 869.3 775.4 648.9 1240.3 943.5 705.0 275.3 346.3 134.3 607.0 877.5 991.7 1044.1 1043.7 

2004 -2005 654.5 820.8 713.0 516.1 1074.6 823.8 693.7 322.7 387.3 214.0 560.3 815.7 813.0 879.7 709.7 

2005 -2006 747.5 912.8 736.5 737.6 1261.6 873.4 651.7 293.2 250.4 250.1 407.4 656.4 562.6 748.3 705.9 

2006 -2007 607.2 731.8 646.3 560.6 1126.1 684.3 486.1 234.7 273.2 234.5 305.4 606.0 762.9 875.5 538.7 

2007 -2008 370.4 103.6 201.6 265.0 522.4 297.5 218.1 106.3 139.1 193.7 148.9 224.6 326.2 307.4 360.1 

2008 -2009 423.8 353.9 332.2 322.7 655.7 486.5 357.9 214.5 200.2 238.3 249.5 288.5 413.0 389.8 529.1 

2009 -2010 799.8 883.5 805.8 707.4 1241.0 880.6 790.4 386.3 507.2 474.4 533.4 564.2 916.5 847.9 773.1 

2010 -2011 568.9 607.5 486.8 525.2 928.8 627.7 618.4 246.4 342.3 222.9 361.9 475.7 662.6 663.5 673.0 

2011 -2012 548.6 628.8 436.0 435.5 1016.2 592.6 409.0 149.6 203.6 143.2 204.4 421.8 658.9 540.1 635.5 

2012 -2013 431.4 697.8 513.1 549.9 1055.5 672.0 630.4 380.6 447.5 258.0 549.7 553.0 772.4 830.4 820.1 

2013 -2014 439.6 799.0 568.0 480.3 911.2 485.0 480.4 340.8 412.3 363.2 499.2 449.1 600.9 581.8 699.7 

2014 -2015 353.9 733.2 612.2 523.6 910.1 553.8 497.9 283.6 356.2 226.0 481.0 595.1 751.8 673.5 652.7 

2015 -2016 765.1 1457.0 854.3 885.2 1443.4 795.9 916.2 558.9 806.1 868.8 709.6 804.2 990.3 941.2 1028.5 

2016 -2017 552.8 804.1 541.0 526.7 901.5 506.5 472.6 271.4 300.6 232.8 430.3 518.8 697.6 541.7 572.0 

2017 -2018 643.7 1029.0 725.7 566.8 1131.9 534.5 561.2 274.2 391.4 257.8 537.9 659.2 826.9 849.4 863.5 

2018 -2019 1147.5 1727.5 1159.6 1159.9 1877.7 1081.4 1338.6 681.8 900.0 608.4 914.3 1041.8 1296.6 1618.4 1374.5 

2019 -2020 745.9 1162.8 1209.8 511.8 1025.9 544.1 561.0 367.0 341.0 334.0 582.8 559.6 809.2 931.7 756.0 

2020 -2021 378.8 485.5 653.6 307.1 695.5 257.6 238.2 117,5 198.9 115.2 285.2 287.0 478.5 405.9 449.5 
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 Consequently, greater temperature fluctuations 

were seen between climate station locations 

(Table 1). Typically, precipitation rises from the 

southwest to the Northeast. The average yearly 

precipitation in the study region varied between 

450 and 700 mm (Najmaddin et al., 2017). The 

yearly average precipitation ranges from 350 

mm in the Sulaimaniyah region to over 1100 

mm in the high mountains bordering Iran (Ahmed 

and Al-quraishi, 2020). From September through 

June, precipitation begins in the study region. 

Therefore, the average precipitation for those 

months was determined. Since the soil samples 

were obtained in 2020, Table 2 displays the 

precipitation averages based on the hydrological 

years (1998–2021) (Gaznayee et al., 2022). 

 

2.2. Methodology 

        This research was completed in numerous 

main steps, including fieldwork, soil sampling, 

laboratory work (assessment of soil properties), 

remotely sensed dataset, statistical analysis, and 

utilizing significant relationships to model and 

map some soil properties of the study area shows 

a flowchart of the study methodology (Figure 2). 

 

2.2.1. Field works 

Data was gathered during the fieldwork for 

all soil sample locations, encompassing various 

aspects such as general soil conditions, 

topography, soil hardness, rock presence, slope, 

and plant species and types.  

Additionally, photographs were captured 

at each location where soil samples were 

collected. The purpose of collecting this data was 

to conduct a comprehensive survey of the entire 

study area. Moreover, the fieldwork aimed to 

gather data specifically for interpreting satellite 

image features and conducting spectral analysis. 

 

2.2.2. Soil sampling  

     A total of one hundred twenty 

georeferenced surface soil samples (0–25 cm) 

were collected from thirteen districts (Fig 1) and 

georeferenced. The GPS receiver (Garmin/Rino 

530 HCx) was used to obtain each site's 

geographical information, including longitude, 

latitude, and elevation. The sampling took place 

between March and May of 2020. All collected 

soil samples were air-dried, crushed, and sieved 

through a 2-millimeter mesh to ensure uniformity 

and prepare them for analysis. Subsequently, the 

samples underwent a series of physical and 

chemical laboratory tests. However, only one 

hundred twenty soil samples from the study area 

were subjected to spectral analysis. To store and 

manage the attribute data for the soil sample 

locations, a geodatabase was established within a 

GIS environment. Each of the 120 soil samples 

had forty records, encompassing various chemical 

and physical characteristics. The geodatabase 

served as the foundation for the entire 

interpolation procedure conducted in this study. 

 

2.2.3. Laboratory works 

    Forty soil samples were subjected to 

several physical and chemical analyses, including 

particle size distribution (percentage of sand, silt, 

and clay) and air-dry soil moisture content. As the 

pH of the soil extract (1:1) was determined using a 

pH meter (Multiline P4/Set-2 following 

(Herrmann and Bucksch, 2014). The soil samples 

were subjected to chemical analysis. Based on 

Rowell (Herrmann and Bucksch, 2014)., the EC of 

the soil extract (1:1) was measured using an EC 

meter (Multiline P4/Set-2) instrument. The 

organic matter was measured by oxidation using a 

solution of 1 mol of potassium dichromate 

k2Cr2O7 in 95% sulfuric acid and calibration with 

0.5 mol of ferrous ammonium sulfate and the 

Diphenylamine indicator (Herrmann and Bucksch, 

2014), The soil's total calcium carbonate was 

determined using the titration technique (Mian, 

2011).  

The bicarbonate technique was used to 

quantify the available phosphorous, as described 

in (Parent et al., 1993). Sodium was determined 

using the flame photometer technique described in 

(Parent et al., 1993). Calcium and Magnesium 

were measured using the titration technique using 

EDTA as an indicator (Rowell, 1996(Herrmann 

and Bucksch, 2014)). In addition, spectral studies 

were done on representative soil samples from 

chosen research sites.  

 

 

 



Abdalkarim. K. et al.  /ZJPAS: 2023, 35 (6): 189-203 
194 

 

ZANCO Journal of Pure and Applied Sciences 2023 

   
 

 
 

 
Fig 2: Flowchart of the applied methodology. 

 

2.3. Remotely Sensed Dataset 

2.3.1. Data collection 

Two images of Landsat 8 OLI representing 

the data (168/35 and 168/36) for 2021 were 

assembled and used. The study year 2021 was 

chosen. A mosaic of two Landsat scenes was 

constructed for the  year 2021. The imageries 

were downloaded from the United States 

Geological Survey (https://ers.cr.usgs.gov/) 

Landsat Collection 1 Surface Reflectance products 

delivered from EROS Science Processing 

Architecture On Demand Interface (ESPA). 

Landsat images were acquired in 2021, during 

which most vegetative proliferation occurred. 

Landsat images have a spatial resolution of 30 m.  

The Advanced Spaceborne Thermal Emission and 

Reflection Radiometer-Global Digital Elevation 

Model (ASTER-GDEM) V2 dataset with a spatial 

resolution of 30 m, available from the National 

Aeronautics and Space Administration (NASA; 

https://www.nasa.gov/), was utilized as the Digital 

Elevation Model (DEM) for this study (Fig. 1c); 

the DEM was used to identify the relationships 

between vegetation percentage and altitude. Daily 

and monthly precipitation datasets at the 22 

meteorological stations in Sulaimaniyah 

Governorate were obtained from the 

Meteorological Department of the Ministry of 

Agriculture and Water Resources, Kurdistan 

Region Government (KRG), Iraq, during the 

period from 1998 to 2021. Detailed information 

on precipitation at the ten meteorological stations 

from 2000 to 2021 is shown in Table 2. 

 

 

2.3.2. Spectral Vegetation Indices 

    Using the ArcGIS ver. 10.8.1, the 

vegetation spectral indices were calculated from 

Landsat OLI-8 images to emphasize and describe 

the vegetative cover in the study area. As spectral 

vegetation indices, this study employed the NDVI, 

MSAVI2, and NDMI. Then, the pixel reflectance 

values of all vegetation indices images were 

collected for 120 different sites to calculate their 

statistical relationships with the other study 

variables. 

 

2.3.3. NDVI 

The NDVI is the most used index for 

vegetation monitoring. It accounts for all the green 

vegetation and is based on the combination of red 

band and near infra-red (NIR) band wavelengths 

and can be computed by the well-known formula 

(Eq. 1) of (Rouse et al., 1974) 

 

NDVI=(NIR–RED)/(NIR+RED), Eq…(1) 

 

where NDVI is the Normalized Difference 

Vegetation Index; NIR is the near infra-red band 

(850–880 nm), and RED is the red band (640–670 

nm). Healthy vegetation has less reflection in the 

visible range of the electromagnetic spectrum 

(EMS) due to the absorption of chlorophyll and 

other pigments. However, it has a high reflectance 

in the NIR section of the EMS. 

The NDVI is a strong vegetation signal 

and is mostly utilized to differentiate vegetative 

areas from non-vegetative areas (Huang and Shen, 

2005). Its digital number values range from –1 to 

1. Specifically, values from –1 to 0 represent the 

non-vegetative features, such as bare surface, 

built-up area, and water bodies, while values from 

0 to 1 represent vegetative cover features.(Al-

Quraishi et al., 2021)are produced on-demand 

(using the USGS Earth Resources Observation 

and Science (EROS) Center Science Processing 

Architecture (ESPA) On Demand Interface).  

 

2.3.4. MSAVI2 

    The Modified Soil Adjusted Vegetation 

Index (MSAVI) and its later revision, MSAVI2, 

are soil-adjusted vegetation indices that seek to 

address some of the limitations of NDVI when 

applied to areas with a high degree of exposed soil 

surface. Also, it was designed to reduce the 

influence of soil in the image and to enhance the 

https://ers.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
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spectral sensitivity for concentrated vegetation 

cover. 

whereas;  

 

MSAVI2=(0.5)*{2*(NIR+1)sqrt[(2*NIR+1)ˆ2–

8*(NIR-R)]}(Qi et al., 1994). Eq…(2) 

 

are produced on-demand, using the (USGS Earth 

Resources Observation and Science (EROS) 

Center Science Processing Architecture (ESPA) 

On Demand Interface).  

 

2.3.5.  NDMI 

    NDMI is used to determine vegetation 

water content. It is calculated as a ratio between 

the NIR and SWIR values in a traditional 

fashion(USGS, 2017). 

(NIR - SWIR) / (NIR + SWIR) Eq…(3) 

In Landsat 8, NDMI = (Band 5 – Band 6) / (Band 

5 + Band 6).                    Eq…(4) 

Landsat Surface Reflectance-derived NDMI are 

produced on-demand, (using the USGS Earth 

Resources Observation and Science (EROS) 

Center Science Processing Architecture (ESPA) 

On Demand Interface).  

 

2.3.6. DEM 

The DEM raster dataset of the study area 

was used to extract the elevation values of each of 

the forty sites with the ERDAS Imagine software. 

On the other hand, the DEM was processed and 

analyzed using ArcGIS 10.8 to produce the maps 

of the Aspect ratio.(Gaznayee; Al-Quraishi, 2019). 

 

2.4.THE STATISTICAL ANALYSES 

2.4.1. The Correlation Coefficient (r) 

All variables in this study, including soil 

physical and chemical properties, Landsat-8 OLI 

image bands reflectance, all examined indices, and 

DEM-based elevation, had their correlation 

coefficients (r) computed. In addition, a 

correlation between observed and anticipated 

surface soil physicochemical parameters was 

done. (Pearson Correlation Coefficient) was 

chosen as the default approach for this purpose. 

To determine if two variables are connected, it is 

the usual practice to monitor how they change 

concurrently (Babbie and Benaquisto, 2009). 

2.4.2. The Predicted maps of the soil 

properties  

The anticipated maps for various surface 

soil attributes were created depending on the 

regression equations derived from the reflectance 

of Landsat OLI8 bands. The regression equations 

to predict various soil qualities using some 

associated bands were applied to 000 ArcGIS 10.8 

to generate a map of the correlated surface soil 

properties.  They were then transferred to ArcMap 

for additional processing, which included the 

construction of pyramids and calculating statistics.   
 

3. RESULTS & DISCUSSION 

3.1. NDVI 

The Landsat OLI-8 image underwent 

NDVI algorithm application to assess the status of 

vegetation cover. The results (refer to Figure 3) 

indicated that the total vegetation area covered 

5176.3 square kilometers, accounting for 21.3% of 

the entire study area. These areas are presented in 

Table 3. The findings also revealed that the 

southwest and western parts of the study area had 

the lowest NDVI values, whereas the northeastern 

parts exhibited the highest values (Fig. 3). Figure 

3 visually demonstrates the maximum and 

minimum values of NDVI, MSAVI2, and NDMI, 

which align with the fluctuations in NDMI values. 

In contrast, there are variations in precipitation 

averages across different locations (Fig. 1A). 

Some sites experienced high precipitation 

averages, leading to a positive impact on the 

increase in NDVI values (Fig. 3). Conversely, 

regions in the southwest of SU demonstrated 

decreased NDVI values and vegetation cover due 

to low precipitation and high temperatures during 

the growing seasons. It is worth noting that this 

reduction in precipitation is considered one of the 

main factors contributing to severe drought 

episodes in Iraq and its Kurdistan region, as 

observed in 2000 and 2008. These drought 

episodes were accompanied by a significant 

decline in moisture and organic matter (OM), as 

depicted in Figure 4. 

 

3.2.MSAVI2 

  The percentage of land covered by 

vegetation was 5299.7 km
2 

presented in Table 3. 

The vegetation indices results indicated that the 

vegetation cover density in the highest classes 

(high and moderate) was located in the northwest 

part of the study area. While it decreased 

gradually toward two directions; the South-East 

and the Southwest. Decreased vegetation cover 

can be linked to the climatic conditions of the 

study area. In more detail, the increase in rainfall 

averages causes an increase in the vegetation 

cover density. The low vegetation percentage may 

https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
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have resulted from a mismatch between seasonal 

precipitation and plant needs during the evaluation 

of the critical growth stage. This result was also 

reported by (Al-Quraishi et al., 2021; Asam et al., 

2018). 

  

3.3.NDMI 

Using the NDMI in the study area (Fig. 3), 

the distribution of soil/vegetation moisture was 

determined. The general trend showed a decrease 

in soil moisture from the North-East to the 

Southwest. This pattern aligns with the local 

climate conditions, particularly the variations in 

rainfall averages and temperature. The North-East 

parts experienced higher rainfall levels, averaging 

around 1,000 mm, which gradually decreased 

towards the Southwest parts, with an average of 

approximately 150 mm. Conversely, the 

temperature exhibited an inverse relationship 

compared to rainfall. The altitude followed a 

similar declining trend, indirectly influencing 

temperature and rainfall. Statistical analysis 

revealed a significant positive correlation between 

soil/vegetation moisture and the pixel values of 

the DEM. Conversely, there was a significant 

negative correlation with an area of 5825.1 square 

kilometers (24.0% of the study area) representing 

moist land pixel values (Table 3). 

3.4. Interpolated maps for the measured soil 

properties 

In general, there are several interrelations 

among the studied soil properties. The 

interpolated map represents a simulation of the 

spatial distributions of soil-measured properties. 

Therefore, this study attempted to plot some of the 

studied soil properties and find some relationships 

among those maps. 
 

Table (3) The max, min, mean, std. dev. of MSAVI2 values 

and the area of vegetative cover 

 

Indices 
Vegetation 

Cover (Km
2
) 

Non-Vegetation 

Cover (Km
2
) 

Total Area 

(Km
2
) 

MSAVI2 5299.7 18996.3 24295.9 

 
%21.8 %78.2 

 
NDVI 5176.3 19119.6 24295.9 

 %21.3 %78.7  

 Moistland Dryland  

NDMI 5825.1 18460.9 24295.9 

 %24.0          %76.0   

 

 
Fig 3: NDVI, MSAVI2, NDMI, and EVI Maps of the 

study area. 

 

3.5. Soil physical properties 

The following are the interpolated maps 

for the measured physical soil properties. The 

physical properties tested in the laboratory and 

their corresponding interpolated values were 

highly convergent, and the interpolated values on 

the maps were realistic and reliable. Figure 4 

depicts the particle size distribution data for all 

sites, and a comparison of these results reveals 

several discrepancies in the clay, silt, and sand 

contents between soil sample locations. Their 

distribution pattern within a location reflects the 

effects of climate on that distribution. In Districts 

8, 9, and 10, the clay content varied between 60 

and 300 g kg-1. All soil samples were taken from 

the surface layer (0–30 cm). In Districts 

11,12,13,14 and 15, the range of clay levels was 

between 360 and 600 g kg -1. The large amounts 

of total clay in some regions are mostly the result 

of geomorphic processes, specifically the transport 

and deposition of fine fractions that were changed 

from the surrounding highland soils to the low 

plain soils, hence increasing the clay content in 

that region. 
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Fig 4: (A)Interpolated map of the measured sand in soil 

;(B) Interpolated map of the measured Silt in soil (C) 

Interpolated map of the measured clay in soil, (D)and 

Interpolated map of the measured pH in soil. 

 

3.6. Soil chemical properties 

    As shown below, the interpolated maps 

for the measured chemical soil properties were 

performed.  As previously indicated, the observed 

chemical characteristics and their interpolated 

values were quite similar in this instance as well, 

and the interpolated values on the maps were 

accurate and may be relied upon when calculating 

the values for any location within the research 

region. The most significant CaCo3 concentrations 

defined large portions of the southern 

Sulaimaniyah Governorate, while the majority of 

the rest of the study region was characterized by 

the lowest CaCO3 concentrations (Fig. 5). The 

southern parts of the research area were warmer 

than the other regions. This large rise in Caco3 is 

attributable to the deficiency of OM, resulting in a 

moisture shortage and a smaller plant cover area 

on lands with low DEM (Fig. 1b and Fig. 6). 

CaCo3 increases in the southeast and southwest of 

the research region led to a decline in CEC in the 

Sulaimaniayah Governorate. This indicates that 

increased CaCo3 contributed significantly to 

decreasing NDVI, MSAVI2, NDMI, and EVI in 

the study area. Figure 4 illustrates the data 

regarding soil pH levels. The pH values 

predominantly ranged from neutral to slightly 

alkaline, which can be attributed to the presence 

of calcareous parent material and environmental 

conditions. The results indicated pH variations 

between 7.0 and 8.0. Certain factors that influence 

soil pH, such as climate, CaCO3 levels, and soil 

texture, cannot be easily modified. 

Districts 1, 2, 3, 10, and 13 exhibited the 

lowest pH levels. Multiple factors contribute to 

this, including the composition of the parent 

material in those regions, higher concentrations of 

CO2, and the application of nitrogen. However, 

the exact extent of these factors' influence requires 

further investigation, as indicated by the 

significance level of p < 0.05 observed between 

the studied years. The relationship between 

NDMI, NDVI, and MSAVI2, as determined by a 

Pearson correlation analysis, is shown in Table 4 

and Fig. 8. The correlation between vegetation 

indices and NDMI with O.M. and clay is 

statistically significant and negative. For each site, 

trends in chemical and physical properties have 

been determined. The majority of clay was located 

in the north and northeast. Fig. 4 depicts the 

findings of the trend analysis for sites 12, 14, 15, 

and 5. The correlation coefficients between Sand, 

Particle Size. The analysis of variance revealed 

significant differences between the variables at p 

0.01 and p 0.05. The relationship between soil 

chemical, physical, and spectral indices, and the 

spectral band was analyzed using Pearson 

correlation, and the findings are shown in Table 6 

and Fig 4, 5, and 6.  

The results have noted that the observed chemical 

characteristics and their interpolated values were 

similar. The interpolated values on the maps are 

accurate and can be relied upon when calculating 

values for any location within the research region. 
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Fig 5: (A)Interpolated map of the measured Organic matter 

in soil, (B) Interpolated map of the measured CaCO3 in soil, 

(C) Interpolated map of the measured EC in soil, and(D) 

Interpolated map of the measured CEC in soil. 

 

The study results illustrate notable 

concentrations of CaCO3 in substantial areas of 

the southern Sulaimaniyah Governorate, while the 

majority of the remaining study region exhibits 

low levels of CaCO3. Furthermore, the findings 

indicate that the southern parts of the research area 

experience higher temperatures compared to other 

regions. In contrast, the proportion of total sand in 

Districts 11, 12, 13, 14, and 15 ranged from 11 to 

200 g kg 
-1

. While the amount of total silt varied 

between 460 and 700 g kg-1 in Districts 8, 9, 10, 

and 11, whilst the range was between 460 and 700 

g kg-1 in Districts 8, 9, 10, and 11. This vast 

variation might be due to the soil's sand-rich 

composition, which was generated by water 

erosion. In another location, similar variations 

may result from steep slopes and little plant 

coverage, and they result in the erosion of surface 

clay and silt particles and the elevation of a sand 

fraction. 

 

 
Fig 6: Interpolated map of the measured K in soil, 

Interpolated map of the measured Ca in soil, Interpolated 

map of the measured magnesium (Mg)in soil, and 

Interpolated map of the measured sodium ion (Na) in soil. 

 

4. DISCUSSION 

The study area has a vegetation 

distribution pattern that varies with geography, 

with the dense and moderately dense vegetation 

classes primarily located in the northwestern part 

of the area and decreasing towards the southeast 

and southwest. This pattern may be due to 

unfavorable climatic conditions for vegetation 

growth in the study area. Also, an increase in 

rainfall averages appears to encourage vegetation 

growth and density. This suggests that 

precipitation may be an important factor in 

determining the density of vegetation in the study 

area. It would be interesting to know more about 

the specific climatic conditions that may be 

limiting vegetation growth in the study area. For 

example, are there particular temperature ranges 

or soil types that are associated with lower 

vegetation density.  

Additionally, it would be useful to understand 

how the observed patterns of vegetation 

distribution have changed over time, and whether 

they are likely to continue changing in the future 

as a result of climate change or other factors. This 
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result was also is stated by Gaznayee (2021), and 

(Al-Quraishi, et al 2021). 

Moreover, based on the DEM maps (Fig. 1), it is 

noticed that the elevation decreases coincide with 

the reduction of the vegetation cover density. The 

mountainous terrain is characterized by high 

elevation (around 2,000 meters above sea level). 

Generally, the IKR mountains are characterized 

by their great heights in the North and 

Northeastern parts, while their heights gradually 

decrease towards the South and Southwest. 

Statistical analysis showed significant positive 

correlations between the DEM values (elevations) 

and all vegetation indices. In more detail, NDVI 

appeared to have negative correlations with DEM, 

NDMI, and all studied vegetation indices. This 

trend explains that an increase in elevation causes 

a decrease in land surface temperature, which 

subsequently causes a rise in soil/vegetation 

moisture and offers a suitable local environment 

for vegetation growth. 

The results also showed that MSAVI2 was 

the most vegetation index that highly responded to 

the aspect ratio than the other vegetation indices 

whereas MSAVI2-based vegetative cover extends 

between 35° Northwest and 46° northeast, as 

reported by (Jin et al., 2008). The aspect ratio 

results disclosed that the maximum growth of the 

vegetation cover was at the shaded side of the 

mountains in the study area more than on the 

sunny side, whereas denser vegetation cover was 

noticed on the shady side. On the contrary, much 

less evapotranspiration is expected, which is 

essential for vegetation growth, and is mainly 

noticed when the mountains are located in a 

semiarid region (Jin et al., 2008). In terms of OM 

(Fig. 5), it is evident that the vegetation cover 

presence is positively related to the vegetation. 

From the northeast to the Southwest direction, the 

CaCO3 increase was obvious, concomitant with 

diminishing vegetation cover (Fig. 3). Several 

environmental factors control vegetation cover 

growth and its spatial distribution, such as 

topographical factors and their influence on 

climate conditions(Kapoor, 2020). Statistically, 

the results revealed a Positive significant 

correlation between NDMI values and all 

vegetation indices, as previously mentioned in this 

paper. Gillie, (2010) stated that the relationship 

between soil moisture, and NDVI, could be called 

a ―Universal Triangle‖. Furthermore, elevation,

aspect, and slope are the main topographic factors 

controlling vegetative cover distribution in 

mountainous areas (Gillies, 2010). Among the 

various vegetation indices utilized in this study, it 

was found that the Clay index (Table 3) detected a 

larger vegetative area in the study region, 

indicating its greater sensitivity to vegetation 

compared to the other indices. However, the 

MSAVI2 index emerged as the most reliable and 

efficient indicator for detecting sparse vegetation. 

The validation of our study results confirmed the 

effectiveness of the studied vegetation indices in 

mapping vegetation presence and vitality across 

different sites within the study area. Furthermore, 

our findings revealed that the MSAVI2 index 

exhibited the strongest association with changes in 

aspect ratio and slope. Li et al. (Jin et al., 2008) 

also found that MSAVI2 is a very good vegetation 

index that was made to reduce the effect of soil on 

the image and increase spectral sensitivity for 

dense vegetation. 

These sensors-based indices detected 

various wavelengths of electromagnetic radiation, 

which can be used to identify different features on 

the earth's surface, including soil properties. 

Multivariate statistical analyses, on the other hand, 

involve the use of statistical models to analyze 

data from multiple variables. By combining 

remote sensing and multivariate statistical 

analyses. One of the key advantages of this 

research is its ability to provide soil data at a large 

spatial scale, which can be particularly useful for 

mapping soil properties in remote or inaccessible 

areas. It can also be used to monitor changes in 

soil properties over time, providing valuable 

information for land management and 

environmental monitoring. On the other side, 

predicting and digital mapping surface soil 

properties using remote sensing and multivariate 

statistical analyses is a powerful technique that 

can revolutionize soil mapping and monitoring for 

physical and Chemical properties. As remote 

sensing technology improves and becomes more 

accessible, this technique is likely to become even 

more valuable for a wide range of applications.
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Table (4) Correlation matrix (Pearson): between Spectral indices, band, and Soil 

Properties. 

Variables b1 b2 b3 b4 b5 b6 b7 sand PSD Clay Caco3 O_M PH Ec CEC Ca Mg2 K Na VI NDMI NDVI MSAVI2 

b1 1.00 0.99 0.96 0.94 0.62 0.81 0.87 0.30 0.21 -0.47 0.45 -0.39 0.01 0.32 -0.32 0.35 0.21 0.01 0.29 -0.62 -0.48 -0.69 -0.61 

b2 0.99 1.00 0.99 0.96 0.67 0.83 0.87 0.28 0.22 -0.44 0.43 -0.36 -0.01 0.33 -0.29 0.34 0.21 0.03 0.29 -0.61 -0.45 -0.68 -0.60 

b3 0.96 0.99 1.00 0.98 0.72 0.86 0.88 0.28 0.22 -0.45 0.44 -0.35 -0.01 0.33 -0.29 0.35 0.22 0.05 0.29 -0.58 -0.43 -0.66 -0.56 

b4 0.94 0.96 0.98 1.00 0.74 0.90 0.91 0.26 0.24 -0.43 0.44 -0.34 0.00 0.31 -0.27 0.33 0.20 0.07 0.28 -0.58 -0.48 -0.65 -0.56 

b5 0.62 0.67 0.72 0.74 1.00 0.78 0.62 0.20 0.09 -0.26 0.16 -0.15 -0.11 0.26 -0.14 0.24 0.15 0.08 0.17 0.10 0.03 -0.01 0.13 

b6 0.81 0.83 0.86 0.90 0.78 1.00 0.94 0.20 0.26 -0.39 0.38 -0.30 -0.04 0.27 -0.23 0.28 0.17 0.08 0.24 -0.40 -0.56 -0.46 -0.37 

b7 0.87 0.87 0.88 0.91 0.62 0.94 1.00 0.22 0.30 -0.44 0.47 -0.35 0.01 0.27 -0.26 0.30 0.19 0.06 0.27 -0.57 -0.66 -0.61 -0.56 

sand 0.30 0.28 0.28 0.26 0.20 0.20 0.22 1.00 -0.39 -0.75 0.17 -0.47 -0.02 0.56 -0.72 0.49 0.27 0.03 0.35 -0.12 -0.09 -0.14 -0.12 

PSD 0.21 0.22 0.22 0.24 0.09 0.26 0.30 -0.39 1.00 -0.31 0.34 -0.09 -0.05 -0.15 0.08 -0.14 -0.23 0.02 -0.10 -0.25 -0.21 -0.26 -0.24 

Clay -0.47 -0.44 -0.45 -0.43 -0.26 -0.39 -0.44 -0.75 -0.31 1.00 -0.42 0.55 0.06 -0.47 0.69 -0.40 -0.11 -0.05 -0.29 0.30 0.24 0.32 0.30 

Caco3 0.45 0.43 0.44 0.44 0.16 0.38 0.47 0.17 0.34 -0.42 1.00 -0.48 0.39 0.14 -0.40 0.19 0.10 -0.09 0.25 -0.44 -0.35 -0.45 -0.44 

O_M -0.39 -0.36 -0.35 -0.34 -0.15 -0.30 -0.35 -0.47 -0.09 0.55 -0.48 1.00 -0.29 -0.35 0.62 -0.40 -0.24 0.31 -0.36 0.29 0.20 0.30 0.29 

PH 0.01 -0.01 -0.01 0.00 -0.11 -0.04 0.01 -0.02 -0.05 0.06 0.39 -0.29 1.00 -0.25 -0.22 -0.23 -0.15 -0.28 -0.13 -0.12 -0.06 -0.10 -0.12 

Ec 0.32 0.33 0.33 0.31 0.26 0.27 0.27 0.56 -0.15 -0.47 0.14 -0.35 -0.25 1.00 -0.40 0.84 0.71 0.24 0.68 -0.14 -0.08 -0.17 -0.14 

CEC -0.32 -0.29 -0.29 -0.27 -0.14 -0.23 -0.26 -0.72 0.08 0.69 -0.40 0.62 -0.22 -0.40 1.00 -0.32 -0.12 0.16 -0.24 0.21 0.16 0.22 0.21 

Ca 0.35 0.34 0.35 0.33 0.24 0.28 0.30 0.49 -0.14 -0.40 0.19 -0.40 -0.23 0.84 -0.32 1.00 0.77 0.32 0.85 -0.18 -0.10 -0.20 -0.18 

Mg2 0.21 0.21 0.22 0.20 0.15 0.17 0.19 0.27 -0.23 -0.11 0.10 -0.24 -0.15 0.71 -0.12 0.77 1.00 0.29 0.85 -0.11 -0.06 -0.12 -0.11 

K 0.01 0.03 0.05 0.07 0.08 0.08 0.06 0.03 0.02 -0.05 -0.09 0.31 -0.28 0.24 0.16 0.32 0.29 1.00 0.28 -0.01 0.00 -0.01 0.00 

Na 0.29 0.29 0.29 0.28 0.17 0.24 0.27 0.35 -0.10 -0.29 0.25 -0.36 -0.13 0.68 -0.24 0.85 0.85 0.28 1.00 -0.20 -0.15 -0.21 -0.20 

VI -0.62 -0.61 -0.58 -0.58 0.10 -0.40 -0.57 -0.12 -0.25 0.30 -0.44 0.29 -0.12 -0.14 0.21 -0.18 -0.11 -0.01 -0.20 1.00 0.74 0.98 1.00 

NDMI -0.48 -0.45 -0.43 -0.48 0.03 -0.56 -0.66 -0.09 -0.21 0.24 -0.35 0.20 -0.06 -0.08 0.16 -0.10 -0.06 0.00 -0.15 0.74 1.00 0.69 0.74 

NDVI -0.69 -0.68 -0.66 -0.65 -0.01 -0.46 -0.61 -0.14 -0.26 0.32 -0.45 0.30 -0.10 -0.17 0.22 -0.20 -0.12 -0.01 -0.21 0.98 0.69 1.00 0.97 

MSAVI2 -0.61 -0.60 -0.56 -0.56 0.13 -0.37 -0.56 -0.12 -0.24 0.30 -0.44 0.29 -0.12 -0.14 0.21 -0.18 -0.11 0.00 -0.20 1.00 0.74 0.97 1.00 
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5. CONCLUSIONS  

In this study, we investigated and compared the 

performance of Two spectral vegetation indices 

and One land spectral index in the study area in 

the Sulaimaniyah. The results revealed that 

chemical and Physical properties could be 

considered reliable, and efficiently utilized to 

explore the vitality and existence of vegetative 

cover in the semi-area. Besides, the results 

revealed that dense vegetation is spreading in the 

Northwest part of the study area and gradually 

decreasing toward the South and Southeastern 

parts.  

Vegetation shrinkage could be ascribed to 

decreasing elevation and rain amounts associated 

with an increase in land surface temperature and 

decreased OM, PH, Clay, and CEC. 

An elevation increase could reduce surface 

temperature associated with rain amounts 

increase, which consequently offers suitable 

conditions for dense vegetation growth and 

existence. However, this study's results could 

support future work to incorporate soil.  

Vegetation Indices obtained from remote sensing-

based canopies are quite simple and effective 

algorithms for quantitative and qualitative 

evaluations of vegetation cover, vigor, and growth 

dynamics, among other applications. 

Remote sensed information about terrestrial 

vegetation growth, vigor, and dynamics can 

provide beneficial insights for environmental 

monitoring, biodiversity conservation, agriculture, 

forestry, urban green infrastructures, and other 

fields.  

Specifically, these types of information applied to 

agriculture provide not only an objective basis 

(depending on resolution) for the macro and 

micro-management of agricultural production but 

also in many occasions, the necessary information 

for yield estimation of crops(Xue and Su, 2017). 

 

1. All of the studied vegetation indices indicated 

that the vegetation cover was denser in the study 

area in North-West and gradually decreased into 

two directions: South-East and Southwest.  

2. The elevation was one of the important factors 

affecting this study's variables, especially the 

vegetation cover. As well as, the derived maps 

from the DEM, Chemical, and physical properties 

also had the same importance for the dissection of  

the distribution of the vegetation cover in the 

study area.  

3. Most soil's physical and chemical properties 

had statistically solid relationships with Landsat 

8OLI-based bands reflectance. 

4. The wavelengths (bands) reflectance with the 

soil's physical and chemical properties had 

statistical strong relationships. 

5. The predicted soil properties maps were 

generated using Kriging Interpolation. 
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