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Abstract 

In this study, principal components analysis, which is one of the methods of multivariate analysis for prediction 

of time series models (Box-Jenkins Model) was used by applying to electric power data (Erbil Gas Power Plant) 

(EGPS) which contains multivariate data (5 stations) and the data was monthly for the period from (1/1/2017) to 

(14/9/2021 (. 

The idea of the research was based on applying principal component analysis to multiple time series data, 

obtaining the components extracted from them, and then estimating the Box-Jenkins Models. 

The main conclusion is that principal component analysis is effective in reducing multiple time series data and 

obtaining the best models based on statistical criteria. 

And finally, the best proposed model for predicting electrical energy production data in the City of Erbil is 

(ARIMA(2,2,2)x(2,2,0)12). 

 

Keywords: Multivariate Analysis; Principal Component Analysis; Box-Jenkins model; prediction. 

 

1. Introduction   

Data forecasting is one of the important topics in scientific research and in many disciplines, 

as it is considered the cornerstone in determining and planning future policies, in this 

research, we discussed the issue of electrical energy, this research aims to predict multiple 

time series using Box-Jenkins methodology for multiple time series data after converting 

them into components based on the (PCA) with covariance matrix, where each component 

was predicted separately and then these models were developed In a multiple model that is 

processed to predict future data and compare it with the original data, and to achieve the 

objectives of the study, the descriptive analytical approach was used by describing the study 

variables and analyzing the results of the applied side, which was based on the statistical 

program (Statgraphics-19). In this research, the researchers tried diagnose the best way to 

predict the productivity of electrical energy in Erbil Governorate  )EGPS( power station for 

the period from (2017 - 2021) using the method of principal components of the time series 

data. 

2. The Study Area  

The EGPS power station is located in (perdawd) village, Erbil Governorate, KRI, it contains 

(10) stations, (8) of which depend on gas and (2) of them depend on steam, and the city of 

Erbil depends on this station. 

3. Methodology 

In this section, the theoretical aspect of the research is presented, as well as how to link the 

analysis of the principal components with time series models 

3.1 Principal Components Analysis: 

The Principal Components Analysis is one of the branches of multivariate analysis and one of 

the important methods in studying a large number of variables, that is, those that pertain to a 
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group of phenomena that are observed around a number of variables linked to each other by 

interrelationships, which is called multi-collinearity. 

3.2  Principal Component Model 

The Principal components model is so that the Eigen vectors are placed as factors in a linear 

combination of the studied random variables Xj, (j=1,2, 3,…,p), and it can be expressed as 

follows:  

                    
ppjjjj XaXaXaPC +++= ...2211
                …(3.1) 

pkjXaPC
P

k

kkjj ,...,2,1,
1

==
=             …(3.2) 

Whereas: 

PCj: Principal Component j. 

akj : the (k) parameter in the (j) component, these coefficients (akj) represent the values of the 

Eigen  vectors (aj) accompanying the Eigen roots (λi).(Dunteman, G.H., 1989.) 

3.3 Time series 

A time series is a set of observations of a particular phenomenon generated during time. 

These observations are characterized by being arranged according to their occurrence in time, 

and successive observations are usually not independent, that is, they depend on each other, 

and the lack of independence will be exploited in arriving at reliable predictions. 

 The time series is defined mathematically as a sequence of random variables defined within 

the multivariate probability space and its index is the index (t), which returns to an index set 

(T) and symbolizes the time series usually{Y(t); t∈T} or simply {Y(t)}. The aim of the 

analysis of the time series model is to understand its basic properties ((Trend (T), Cyclical 

(C), Seasonal (S) Irregular (I)), as well as using it to estimate and then predict the behavior of 

the time series in the future (Abdul, 2004), Observational time series (x1, x2,…, x n -1 , xn) is 

stationary if the following conditions: (Bari, 2002) 

1. Mean: 

….(3.3) 

2. Variance: 

              …(3.4) 

3. The independence of the autocorrelation coefficients between ( Ys ) , (Yt ) 

  stYst YYE −=−− 
2

/))((                                        … (3.5) 

3.4 Autocorrelation  Function(ACF) 

 The main statistical tool in the analysis of time series is the autocorrelation coefficient, also 

called series Correlation, and the term autocorrelation can be clarified on the basis that it 

represents the correlation between the sequential observations of the same variable during a 

period of time, and the content of autocorrelation is the fact that the random variable that 

occurs during A certain time period is related to the random variable that precedes it or 

follows it, i.e. the series correlation with itself or its creep by (1,2,3,…) period, and the 

general formula for calculating the autocorrelation of a phased series is:  
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Where (pk ) represents the autocorrelation with a Lag of k . 

3.4.1 Partial autocorrelation Function (PACF) 

It is used to measure the degree of correlation between ( Yt-k , Yt )when the effect of 

delay time is ( Time lags ) (1,2,…,k-1) has been removed, PACF is defined as: 

111 r=           …(3.7) 
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Where : 

jk,1kkkj,1kkj  −−− −=
       … (3.9) 

3.5 Box-Jenkins Models in Time Series  

3.5.1 Autoregressive Model (AR(p))  

In this model the value of the variable in the current period ( ) depends on its value 

in the previous periods (Y(t-1) )The autoregressive model is a linear regression of the time 

series values (dependent variable) with one or more of the previous values of the time 

series as variables Not supported (independent variables) and is denoted by the symbol 

AR (p). The model can be written in the following form: (Karakaş, 2019) 

   

whereas: 

(  : Constant term (-∞<μ<∞) . 

(p ) : rank of the model. 

( ) time series observations at time t. 

( ): Model parameters, (-1 < ∅ < 1). 

( ): The random error (white noise) is distributed normally ~ WN(0,σ ² )  

3.5.2 Moving Average Model (MA(q))  

The time series can be represented by the moving averages model, and it expresses 

the current value of the series (  in terms of the weighted sum of the previous values of 

the errors, meaning that it depends on the previous errors to represent the time series and 

is denoted by the symbol MA (q) and written in the following formula: (Karakaş, 2019) 

 
3.5.3 Integrated Mixed Model (ARIMA)  

ARIMA models for an unstable linear time series, in the event that the time series is 

unstable on average, and so we make transformations by taking the differences and 

converting them to a stable series, and the differences are taken with positive integers (d), 

and ARIMA models (p, d, q)) are considered The most used time series models in the 

process of forecasting future values, in the Arima model, the future value of the variable 

is a linear combination of past values and past errors, and its formula is as follows: 

(Chakravarti et al., 1973) (Zhang, 2003) (Mumbare et al., 2014) (Wang, Y) (Tian, S  

2018) 

 
 the Actual values. 

 Random errors. 

 Represent the parameters of the model. p, q: represents the model's rank. 

 

3.5.4 Multiplicative Seasonal ARIMA Models 

In some cases, all previous seasonal and non-seasonal models are combined to form 

a model that may be the best in data analysis. The seasonal autoregressive (SAR) models 

and the Seasonal moving averages (SMA) model are considered the multiplication 

model. As a product of the components of the four time series (general trend, seasonal 

changes, cyclical changes, episodic changes), this model assumes that the four factors 
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interact with each other and do not move independently ARMA(p,q)x(P,Q) and its 

formula is as follows: (Guo, J. 2009) (Shu, 2005) (Tran 2015) (Miao 2014) 

 
The general formula of the Seasonal Autoregressive Integrated Moving Average 

SARIMA(p,d,q)x(P,D,Q) is as follows: 

 
3.5.5 Modeling Procedure: 

Box–Jenkins, 1976, proposed a method for analyzing time series data consists of four 

steps: 

 i) Model identification. 

 ii) Estimation of model parameters. 

 iii) Diagnostic checking for the identified model. 

 v) application of the model in forecasting purposes.[3] 

 

3.6 Employ Principal Components in Box-Jenkins Model 

 

The following method has been employed to find the final model adopted in 

prognosis using the principal components (Ladalla,2000): 

 

 
Where: 

          : Principal component matrix k*k, k=1,2,3… 

          : Matrix of random variables k*k,   k=1,2,3… 

           : Matrix of eigen Vectors k*k, k=1,2,3… 

From equation (3.15) the original data can be obtained Xt: 

 

 
           : Transpose of the matrix P. 

To simplify, suppose we have the following model: 

 
          : Tracing Dynamic model  

          : Parameter of Dynamic model. 

           :  Random errors distributed  

From the equations (3.15) (3.17), we get: 

 
Parameter of the model is represented in the form of a matrix represented by the following 

equation: 

 
and that: 

 
and that: 

  

  

  

By knowing the model that the series follows, it is possible to predict future periods and know 

the efficiency of the models using statistical criteria  that the researcher can determine. 
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4-Applications 

4-1. Introduction:  

    Implementation of the practical applied aspect requires obtaining data that is a basic pillar 

in reaching reliable results, and this is done through the quality of data that achieves the 

applied aspect. 

The application methodology in this research was represented in studying the analysis of the 

principal components of time series and applying the Box-Jenkins models (ARIMA) where 

data were obtained on the productivity of electrical energy. With monthly productivity for a 

year, (5) units of production, with (57) views for each series, and the results were extracted 

using (STATGRAPHICS 19). 

4-2. Data Analysis: Data analysis includes a number of steps: 

4-2-1. Identification 

The identification process is carried out first by test the time series, is it stationary with the 

mean and variance, and through the diagram we can see the nature of the fluctuation in it, 

where the data of the monthly produced quantity of electricity as shown in Figure (1), To test 

the mean and variance of the time series (5) were plotted with time as follows: 

 

 

 

 
Figure (1): Time Series Plots 

It is noticed from the previous figures that the time series are non-stationary in the mean and 

variance, and it can be ascertained about the progress of the series by observing the 

autocorrelation (2) and partial autocorrelation (3) functions of the series (5) and as follows: 
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Figure (2): Autocorrelations 
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Figure (3): Partial Autocorrelations 

 

4-2-2. Principal Component Analysis 

To reduce the number of studied variables and without losing a large amount of information, 

principal component analysis was relied on to analyze a certain number of variables, we note 

in table (1) and Figure (4) that (3) principal components were extracted because (the 

eigenvalue has greater than the correct one) with an interpretation rate of 82.976%, which is a 

high percentage. 

 

Table (1): Explain Total Variance 

Component  

Number 

Eigenvalue Percent of 

Variance 

Cumulative 

Percentage 

1 1.68314 33.663 33.663 

2 1.45174 29.035 62.698 

3 1.01395 20.279 82.976% 

4 0.622194 12.444 95.420 

5 0.228982 4.580 100.000 

 

 
Figure (4): Scree Plot 

 

4-2-3. Application using ARIMA models on the extracted components: 

In this section, ARIMA models were used on the extracted data of the three principal 

components:  

4-2-3-1 Application using ARIMA models on the first component: 
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Figure (5): time series plot for first component 

 

We notice in the figure (5) that the series is non-stationary, which indicates that the mean is 

non-stationary over the time, to know and make sure that the series is stationary or not? the 

autocorrelation function and the partial autocorrelation function of the chain were examined 

as in the two figures (6) & (7): 

 

 
Figure (6): ACF for first component 

 

 
Figure (7): PACF for first component 

 

We note that the ACF autocorrelation function is that the first shifts in the values of the 

autocorrelation coefficients are significant outside the confidence limits (∓0.259), and only 

the partial autocorrelation function PACF is outside the confidence limits. 

4-2-3-2 Randomization test: 

The ljung-box test was used to test the hypothesis shown in Table (6). Since the p < 0.05, we 

reject the null hypothesis and this indicates that the time series of PC1 is not random. 

Table (6): The ljung box test to test the randomness of the time series of PC1 

P-value test statistic Hypothesis testing 

0.000 129.72 
      H0: time series is random 

H1: time series is not random 
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4-2-3-3 Achieving Stationary for the time series (PC1): 

It was found through the drawing of the original time series for the PC1 that it is non- 

stationary, and to make the series stationary around the variance and about the mean, it also 

contains seasonal effects, as it was found that the values in the periods (24,12) are repeated, 

which indicates that the time series is seasonal and that it repeats itself every (12) months 
 
  

After several attempts to make the time series stable, we first take the first seasonal difference 

and the model is doubly seasonal as in Figure (8), the autocorrelation coefficients (ACF) and 

partial autocorrelation (PACF) were drawn, as most The values are within confidence limits 

as shown: 

 
  Figure (8): plot the first component time series transformed (first seasonal difference) 

 

 

 
Figure (9): plot of the ACF of the transformed series (first seasonal difference) 

 

 
Figure (10): plot of the PACF of the transformed series (first seasonal difference) 

 

After drawing the autocorrelation function (ACF) and the partial autocorrelation function 

(PACF), we notice that each of the two curves, the values of their coefficients, decrease 

gradually with the increase of the displacement periods and fall within the confidence range 

so that the time series is considered stable. 

4-2-3-4 Randomization test after taking the first difference: 

 We note in the table (7) that after taking the necessary transformations (first seasonal 
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difference) the data of series PC1 is random. 

Table (7): ljung & box test to test the randomness of the modified time series after taking the 

first seasonal difference. 
Hypothesis testing test statistic p-value 

m      : time series is rando0H 

: time series is not random1H 
16.8533 0.533209 

 

4-2-3-5 Choosing the appropriate model for the time series: 

In this step, the appropriate model is determined after we have stationary in the time series of 

the first component and determined its degree by studying the behavior of the ACF and the 

PACF, (5) models were taken, in order to choose the appropriate model for the data that has 

the lowest value for many (criteria) that were applied to them (RMSE), Akaike Information 

Criterion (AIC), Baysian Information Standard (BIC) and Hanan-Queen Standard (HQC) as 

in the table(8): 

Table (8): Suggested models for the time series for the first component 
Model RMSE AIC HQC SBIC 

12ARIMA(2,2,2)x(2,2,0) 0.180955 -3.20849 -3.12491 -2.99343 

12ARIMA(2,2,0)x(2,2,0) 0.259764 -2.55561 -2.49989 -2.41224 

12ARIMA(2,2,1)x(2,2,0) 0.257681 -2.53663 -2.46698 -2.35741 
120)x(2,2,1)RIMA(2,2,A 0.268249 -2.45624 -2.38659 -2.27702 
12ARIMA(2,2,1)x(2,2,1) 0.266173 -2.43669 -2.35311 -2.22164 

The appropriate model is the first model, ARIMA (2,2,2)x(2,2,0)12, which was chosen 

based on the Akaike Information Criterion (AIC), Hanan Quinn (HQC) and Schwartz 

Bees Standard (SBIC). 

4-2-3-5 Estimation: 

After determining the appropriate model, the parameters of the ARIMA model 

(2,2,2)x(2,2,0)12 were estimated, in order to know the significance of the estimated 

parameters as in Table (9), We note that all the estimated parameters of the appropriate 

model are significant (p<0.001): 
12Table (9): Estimation of Parameters Values for ARIMA Model (2,2,2)x(2,2,0) 

Parameter Estimate Stnd. Error t P-value 

AR(1) -0.00164876 0.0360998 -0.0456724 0.963934 

AR(2) -1.00086 0.00372375 -268.777 0.000000 

MA(1) 0.18658 0.0568016 3.28477 0.003017 

MA(2) -0.808975 0.0584686 -13.8361 0.000000 

SAR(1) -1.25691 0.0485947 -25.8652 0.000000 

SAR(2) -1.00187 0.00661437 -151.469 0.000000 

 

3-2-3-6 Forecasting 

After determining the appropriate model for the time series and estimating its parameters, 

we now reach the last stage, which is forecasting the production quantities for the first 

component, which includes production units in the EGPS station. The forecast is on a 

monthly basis for a Forecast of one year. 

Table (10): Forecast values for the first component. 

Period Forecast Lower 95% Limit Upper 95% Limit 

10/54 1.7557 1.37763 2.13378 

11/54 4.92998 4.14758 5.71237 

12/54 4.31813 3.11083 5.52542 

1/55 4.1786 2.45845 5.89874 

2/55 5.05642 2.70481 7.40803 



  2023، ساڵى 2، ژمارە. 27بەرگى.                                                                      رى زانکۆ بۆ زانستە مرۆڤایەتییەکانگۆڤا
 

444 
 

Vol.27, No.2, 2023 
 

3/55 5.18121 2.15156 8.21087 

4/55 8.46858 4.75674 12.1804 

5/55 10.8841 6.43624 15.3319 

6/55 8.92454 3.65331 14.1958 

7/55 10.6842 4.55098 16.8174 

8/55 12.4425 5.4446 19.4403 

9/55 12.3301 4.42555 20.2347 

The table shows the future values that all the predicted values are between the upper and 

lower bounds, with a confidence of 95%. 

 
Figure (11): forecast values for the first component and confidence limits. 

 

The same steps above were applied to the second and third components, and the results 

were as follows: 

4-2-4 ARIMA models on the Second Component: 

Table (11): Suggested models for the time series for the second component 

Model RMSE AIC HQC SBIC 

ARIMA(2,2,2)x(2,2,0)12 0.514273 -1.11947 -1.0359 -0.904417 

ARIMA(2,2,2)x(2,2,1)12 0.518498 -1.06802 -0.970516 -0.817124 

ARIMA(2,1,0)x(2,2,2)12 0.527868 -1.06729 -0.983713 -0.852234 

ARIMA(2,2,2)x(2,2,2)12 0.528351 -0.995287 -0.883849 -0.708543 

ARIMA(1,0,0)x(2,2,2)12 0.567394 -0.957964 -0.888314 -0.778749 

After determining the appropriate model, the parameters of the ARIMA model 

(2,2,2)x(2,2,0)12 were estimated, in order to know the significance of the estimated 

parameters as in Table (12): 

 

Table (12): Estimation of Parameters Values for ARIMA Model (2,2,2)x(2,2,0)12 
Parameter Estimate Stnd. Error t P-value 

AR(1) -0.578814 0.0740673 -7.8147 0.000000 

AR(2) -0.973181 0.0424652 -22.9172 0.000000 

MA(1) 1.47241 0.0837192 17.5875 0.000000 

MA(2) -0.580915 0.0693088 -8.38154 0.000000 

SAR(1) -0.00814576 0.0108006 -0.754196 0.457777 

SAR(2) 0.997621 0.0105285 94.7545 0.000000 
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Figure (12): The original time series and the predicted values in the 

ARIMA(2,2,2)x(2,2,0)12 model. 
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Figure (13): Autocorrelation of the residuals of the ARIMA (2,2,2)x(2,2,0)12 model. 

 

 
model. 12ARIMA (2,2,2)x(2,2,0)he PACF of the residuals of the ): T13e (rFigu 

 

Table (13): Forecast values for the second component. 

Period Forecast Lower 95% 

Limit 

Upper 95% 

Limit 

10/54 2.54565 1.47466 3.61664 

11/54 -3.80888 -4.88127 -2.73649 

12/54 1.72324 0.601445 2.84504 

1/55 9.22223 7.69154 10.7529 

2/55 9.44044 7.78468 11.0962 

3/55 4.86993 3.17778 6.56208 

4/55 9.21663 7.37225 11.061 
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5/55 8.86193 6.67385 11.05 

6/55 7.68736 5.49922 9.8755 

7/55 10.6652 8.44787 12.8826 

8/55 16.1437 13.5107 18.7766 

9/55 16.3141 13.623 19.0051 

4-2-5 ARIMA models on the Third Component: 

Table (14): Suggested models for the time series for the third component 
Model RMSE AIC HQC SBIC 

ARIMA(2,1,2)x(2,2,0)12 0.399718 -1.62347 -1.53989 -1.40841 

ARIMA(2,1,2)x(2,2,1)12 0.399472 -1.58961 -1.4921 -1.33871 

ARIMA(2,1,2)x(2,2,2)12 0.401984 -1.54198 -1.43055 -1.25524 

ARIMA(2,0,1)x(2,2,0)12 0.471664 -1.32754 -1.25789 -1.14832 

ARIMA(0,0,2)x(2,2,0)12 0.489263 -1.28936 -1.23364 -1.14599 

 
122,1,2)x(2,2,0)A Model (MI): Estimation of Parameters Values for AR15Table ( 

Parameter Estimate Stnd. Error t P-value 

AR(1) 0.870261 0.0779859 11.1592 0.000000 

AR(2) -0.971534 0.0530477 -18.3143 0.000000 

MA(1) 1.56539 0.0686402 22.8057 0.000000 

MA(2) -0.630029 0.0566347 -11.1244 0.000000 

SAR(1) -1.83538 0.0763487 -24.0394 0.000000 

SAR(2) -0.983574 0.013598 -72.3324 0.000000 

 
Figure (15): forecast values for the third component and confidence limits. 

Table (16): Forecast values for the third component. 

Period Forecast 
Lower 95% 

Limit 

Upper 95% 

Limit 

10/54 -2.91658 -3.74641 -2.08675 

11/54 -2.02813 -2.89566 -1.16059 

12/54 0.756745 -0.261128 1.77462 

1/55 -0.338919 -1.54959 0.871748 

2/55 -2.90106 -4.11173 -1.69039 

3/55 -0.533547 -1.92745 0.860362 

4/55 -1.70038 -3.24026 -0.160496 

5/55 -5.29098 -6.83161 -3.75035 

6/55 3.53251 1.87033 5.1947 

7/55 4.80126 3.08114 6.52139 

8/55 1.48514 -0.256761 3.22704 

9/55 -0.226752 -2.11262 1.65911 
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4-2-6. Comparison between the models in components: 

Based on (RMSE) to comparison between the selected models in each component’s 

component, as shown in the table (17): 

Table (17): Comparison of the extracted models 

NO. Components Models RMSE 

1 First component ARIMA(2,2,2)x(2,2,0)12 0.180955 

2 Second component ARIMA(2,2,2)x(2,2,0)12 0.514273 

3 Third component ARIMA(2,1,2)x(2,2,0)12 0.399718 

We notice in the table (17) that the first component series model ARIMA(2,2,2)x(2,2,0)12 

ranks first, the third component series model ARIMA(2,1,2)x(2,2,0)12 ranks second, and the 

second component series model ARIMA(2,2,2)x(2,2,0)12 ranks third.  

4-2-7. Select the best model and forcasting data of EGPS : 

In this section, the best model is selected, which is (ARIMA(2,2,2)x(2,2,0)12) based on the 

statistical criteria in table (17), and the data on electric power production for the city of Erbil 

were forcasting  for a period of (12) months for 2022, the table (18) and graph (16) show that. 
Table (18) Forecast Table for EGPS 

Model: ARIMA(2,2,2)x(2,2,0)12 with constant 

Period Forecast 
Lower 95% 

Limit 

Upper 95% 

Limit 
Period Forecast Limit Limit 

58.0 2423.14 2345.45 2500.83 

59.0 2845.58 2724.93 2966.23 

60.0 2579.56 2454.11 2705.0 

61.0 2794.95 2669.5 2920.39 

62.0 2370.52 2235.31 2505.72 

63.0 2820.57 2637.44 3003.69 

64.0 2946.14 2724.83 3167.46 

65.0 2364.79 2134.57 2595.01 

66.0 2783.37 2549.49 3017.24 

67.0 3415.87 3161.04 3670.7 

68.0 3793.02 3488.19 4097.86 

69.0 3627.24 3285.36 3969.11 

Time Sequence Plot for EGPS

ARIMA(2,2,2)x(2,2,0)12 with constant
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Figure (16): forecast values for the best model ARIMA(2,2,2)x(2,2,0)12 

 

4-2-8. Conclusions: 

1- In terms of time series models, we note that the estimated models are close to each other, 

which means that it can be relied upon in forecasting electrical energy data. 

2- There are seasonal effects on the data of 12. 

3- It can be concluded that the application of Box Jenks models on the extracted components 

data gave good results in terms of predicting data. 
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4-The main components extracted have importance in terms of order (the first component, 

then the second component ... etc.) and here we note that the estimated model for the first 

component has less RMSE. 

5-The best proposed model for forecasting electrical energy production data in the city of 

Erbil is: ARIMA(2,2,2)x(2,2,0)12. 
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 ڕزگار مەغدید ئەحمەد ەلە یونس سلیم منیداء 

، زانكۆی سەلاحەددینکارگێرى و ئابوورى ، كۆلێژی  اریەکانانیو ز ئامار ەشی ب  هەولێر-
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 پوختە

ۆدێلی  مۆدێلی زنجیرە کاتییەکان )م  بەکارهێنرا بۆ پێشبینیکردنی    گۆڕاوشیکاری فرەزەکانی  شێوا لە    یەکان کە یەکێکە لەم توێژینەوەیەدا، شیکاری پێکهاتە سەرەکی

بەکارهێنانى-بۆکس بە  هەولێر(  لەسەر  جێنکنز(  غازی  کارەبای  )وێستگەی  کارەبا  )EGPS)  داتاکانی  لەخۆدەگرێت  فرەگۆڕاو  داتای  کە  داتاکان    5(  و  وێستگە( 

م بۆ  بوون  )مانگانە  )  (2017/ 1/ 1اوەی  بنەمای  ، (2021/ 9/ 14تا  لەسەر  توێژینەوەکە  شیکار جێکردجێبە   بیرۆکەی  داتاى  نی  لەسەر  سەرەکیەکان  پێکهاتە  ى 

بەدەستهێنا فرە و  کاتییەکان  زنجیرە  )بۆکس  گۆڕاوى  مۆدیلى  خەمڵاندنى  پاشان  دەرهێنراوەکان  پێکهاتە  پێک   ( جێنکز-نی  سەرەکیدەرەنجا  ,هاتەکانلەسەر    می 

 .  پشت بەست بە پێوەرى ئامارى ریگەررە کاتیی و خەمڵاندنی مۆدێلی کا کاریگەرە لە کەمکردنەوەی چەندین داتای زنجی ی سەرەکی هاتە پێک  ئەوەیە کە شیکاری

 ARIMA(2,2,2)x(2,2,0)12 :كة ئةويش: بۆ پێشبینی داتاى بەرهەم هێنانی کارەباى شارى هەولێر  بذيردرالهە   ێل، باشترین مۆدە کۆتاییدال

 .کردنین یشبێپ نکنز؛ێج-کسۆ ب یل ێدۆ م ؛یک ەر ەس ەی کهاتێپ یکار یش او؛ۆڕ گەفر  یکار یش  :كانكلیلە ووشە
 

 ل الزمنية واختيار أفضل النماذج مع التطبيق توظيف المكونات الرئيسية في نماذج السلاس
 

 کار مغدید أحمد رز  نیداء سلیم ملا یونس 

 لأربي  -دین ال  حصل   عة ، جامالأدارة و الأقتصاد، كلیە  والمعلوماتية الأحصاء قسم 

nida.malayounis@su.edu.krd 

 لأربي  -دین ح العة صل ، جامالأدارة و الأقتصاد، كلیە  والمعلوماتية الأحصاء قسم 
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 ملخص 

(  Box-Jenkins Modelلسل الزمنية )ذج الس، وهو أحد طرق التحليل متعدد المتغيرات للتنبؤ بنمام تحليل المكونات الرئيسية  تم استخدا  الدراسة،في هذه  

محطات(    5ات متعددة المتغيرات )( والتي تحتوي على بيانEGPSالكهربائية )محطة توليد الطاقة الغازية في أربيل( )من خلل التطبيق على بيانات الطاقة  

البياناتوكا  )  نت  للفترة من  )2017/ 1/ 1شهرية  البحث  ،  )2021/ 9/ 14( الى  فكرة  تطباستندت  تحليل المكونإلى  الزمنية    الرئيسية   اتيق  السلسل  بيانات  على 

 .Box-Jenkinsحصول على المكونات المستخرجة منها ، ثم تقدير نماذج المتعددة ، وال

 ARIMA(2,2,2)x(2,2,0)12 :لتنبؤ لبيانات انتاج الطاقة الكهربائية في مدينة اربيل  هيافضل النماذج المقترحة في ا اختيار تم اخيرا و 

ال أن  الاستنتاج  الرئيسيرئيسي هو  المكون  النماذج  ة تحليل  أفضل  على  والحصول  المتعددة  الزمنية  السلسل  بيانات  تقليل  في  معايير    فعال  على  بالأستناد 

 .إحصائية 
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