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Abstract
In this study, principal components analysis, which is one of the methods of multivariate analysis for prediction
of time series models (Box-Jenkins Model) was used by applying to electric power data (Erbil Gas Power Plant)
(EGPS) which contains multivariate data (5 stations) and the data was monthly for the period from (1/1/2017) to
(14/9/2021).
The idea of the research was based on applying principal component analysis to multiple time series data,
obtaining the components extracted from them, and then estimating the Box-Jenkins Models.
The main conclusion is that principal component analysis is effective in reducing multiple time series data and
obtaining the best models based on statistical criteria.
And finally, the best proposed model for predicting electrical energy production data in the City of Erbil is
(ARIMA(2,2,2)x(2,2,0)12).

Keywords: Multivariate Analysis; Principal Component Analysis; Box-Jenkins model; prediction.

1. Introduction

Data forecasting is one of the important topics in scientific research and in many disciplines,
as it is considered the cornerstone in determining and planning future policies, in this
research, we discussed the issue of electrical energy, this research aims to predict multiple
time series using Box-Jenkins methodology for multiple time series data after converting
them into components based on the (PCA) with covariance matrix, where each component
was predicted separately and then these models were developed In a multiple model that is
processed to predict future data and compare it with the original data, and to achieve the
objectives of the study, the descriptive analytical approach was used by describing the study
variables and analyzing the results of the applied side, which was based on the statistical
program (Statgraphics-19). In this research, the researchers tried diagnose the best way to
predict the productivity of electrical energy in Erbil Governorate (EGPS) power station for
the period from (2017 - 2021) using the method of principal components of the time series
data.

2. The Study Area

The EGPS power station is located in (perdawd) village, Erbil Governorate, KRI, it contains
(10) stations, (8) of which depend on gas and (2) of them depend on steam, and the city of
Erbil depends on this station.

3. Methodology

In this section, the theoretical aspect of the research is presented, as well as how to link the
analysis of the principal components with time series models

3.1 Principal Components Analysis:

The Principal Components Analysis is one of the branches of multivariate analysis and one of
the important methods in studying a large number of variables, that is, those that pertain to a
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group of phenomena that are observed around a number of variables linked to each other by
interrelationships, which is called multi-collinearity.

3.2 Principal Component Model

The Principal components model is so that the Eigen vectors are placed as factors in a linear
combination of the studied random variables Xj, (j=1,2, 3,...,p), and it can be expressed as
follows:

PC, =a,; X, +a,, X, +..+a,; X -..(3.1)
P
PC. =Y a, X k=12,
: kZ; o . P ...(3.2)

Whereas:

PC;: Principal Component j.

axj - the (k) parameter in the (j) component, these coefficients (ax;) represent the values of the
Eigen vectors (aj) accompanying the Eigen roots (Ai).(Dunteman, G.H., 1989.)

3.3 Time series
A time series is a set of observations of a particular phenomenon generated during time.
These observations are characterized by being arranged according to their occurrence in time,
and successive observations are usually not independent, that is, they depend on each other,
and the lack of independence will be exploited in arriving at reliable predictions.

The time series is defined mathematically as a sequence of random variables defined within
the multivariate probability space and its index is the index (t), which returns to an index set
(T) and symbolizes the time series usually{Y(t); teT} or simply {Y(t)}. The aim of the
analysis of the time series model is to understand its basic properties ((Trend (T), Cyclical
(C), Seasonal (S) Irregular (1)), as well as using it to estimate and then predict the behavior of
the time series in the future (Abdul, 2004), Observational time series (X1, X2,..., X n-1, Xn) IS
stationary if the following conditions: (Bari, 2002)

1. Mean:
E(Y;)= n ....(3.3)
2. Variance:
var (Y; ) = E(Yt — u)? = o ...(3.4)
3. The independence of the autocorrelation coefficients between ( Ys), (Yt)
E|_(Yt —ﬂ)(Ys—ﬂ)/O'YZJ:Pt_s ... (3.5)

3.4 Autocorrelation Function(ACF)

The main statistical tool in the analysis of time series is the autocorrelation coefficient, also
called series Correlation, and the term autocorrelation can be clarified on the basis that it
represents the correlation between the sequential observations of the same variable during a
period of time, and the content of autocorrelation is the fact that the random variable that
occurs during A certain time period is related to the random variable that precedes it or
follows it, i.e. the series correlation with itself or its creep by (1,2,3,...) period, and the
general formula for calculating the autocorrelation of a phased series is:

_ EC = )M — 14
pk - 2
E(Y— ) ..(3.6)
Where (pk ) represents the autocorrelation with a Lag of k .
3.4.1 Partial autocorrelation Function (PACF)

It is used to measure the degree of correlation between ( Yk , Yt )when the effect of
delay time is ( Time lags ) (1,2,...,k-1) has been removed, PACF is defined as:

b, =1, ...(3.7
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k-1
e _Z¢k—l Mt N
_ =1
P = k1

1_Z¢k—l,j r;
j=1

...(3.8)
Where :

d)kj = ¢k—1,j_ D (I)k—l,k—j ...(3.9)

3.5 Box-Jenkins Models in Time Series
3.5.1 Autoregressive Model (AR(p))

In this model the value of the variable in the current period (¥;) depends on its value
in the previous periods (Y 1) ) The autoregressive model is a linear regression of the time
series values (dependent variable) with one or more of the previous values of the time
series as variables Not supported (independent variables) and is denoted by the symbol
AR (p). The model can be written in the following form: (Karakas, 2019)

Vi=u+ ¢V + Vet + Y, +a ..(3.10)
whereas:
(u) : Constant term (-co<p<oo) .
(p) : rank of the model.
('¥;) time series observations at time t.
(?): Model parameters, (-1 < @ < 1).
(a;): The random error (white noise) is distributed normally a,~ WN(0,c 2)
3.5.2 Moving Average Model (MA(Q))

The time series can be represented by the moving averages model, and it expresses
the current value of the series ( ¥;) in terms of the weighted sum of the previous values of
the errors, meaning that it depends on the previous errors to represent the time series and
is denoted by the symbol MA (q) and written in the following formula: (Karakas, 2019)

Vi=p+a —0ia;y — 00t — - —0a;_4 - (3.11)
3.5.3 Integrated Mixed Model (ARIMA)

ARIMA models for an unstable linear time series, in the event that the time series is
unstable on average, and so we make transformations by taking the differences and
converting them to a stable series, and the differences are taken with positive integers (d),
and ARIMA models (p, d, q)) are considered The most used time series models in the
process of forecasting future values, in the Arima model, the future value of the variable
is a linear combination of past values and past errors, and its formula is as follows:
(Chakravarti et al., 1973) (Zhang, 2003) (Mumbare et al., 2014) (Wang, Y) (Tian, S
2018)

Ve=u+diVey + Ve o+t @Y p+a — 0,V — 015 —
—6,Y:—q ..(312)
Y;: the Actual values.
a; * Random errors.
@,8 : Represent the parameters of the model. p, g: represents the model's rank.

3.5.4 Multiplicative Seasonal ARIMA Models

In some cases, all previous seasonal and non-seasonal models are combined to form
a model that may be the best in data analysis. The seasonal autoregressive (SAR) models
and the Seasonal moving averages (SMA) model are considered the multiplication
model. As a product of the components of the four time series (general trend, seasonal
changes, cyclical changes, episodic changes), this model assumes that the four factors
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interact with each other and do not move independently ARMA(p,q)x(P,Q) and its
formula is as follows: (Guo, J. 2009) (Shu, 2005) (Tran 2015) (Miao 2014)
O(B)®(BS)Y, = 8(B)8(BS)a, ...(313)
The general formula of the Seasonal Autoregressive Integrated Moving Average
SARIMA(p,d,q)x(P,D,Q) is as follows:
$p(B)®, (BX)VAVLY, = 6,(B)0,(B%)a; ...(3.19)
3.5.5 Modeling Procedure:
Box-Jenkins, 1976, proposed a method for analyzing time series data consists of four
steps:
i) Model identification.
i) Estimation of model parameters.
iii) Diagnostic checking for the identified model.
v) application of the model in forecasting purposes.[3]

3.6 Employ Principal Components in Box-Jenkins Model

The following method has been employed to find the final model adopted in
prognosis using the principal components (Ladalla,2000):

X.P =W, ..(3.15)
Where:
W; : Principal component matrix k*k, k=1,2,3...
X; : Matrix of random variables k*k, k=1,2,3...
P : Matrix of eigen Vectors k*k, k=1,2,3...
From equation (3.15) the original data can be obtained X

X, =W, PT ..(3.16)
PT : Transpose of the matrix P.
To simplify, suppose we have the following model:
Wit =@;We-1 + a5 - (3.17)
W; + : Tracing Dynamic model
@;+ - Parameter of Dynamic model.
a; . - : Random errors distributed N (0,5)
From the equations (3.15) (3.17), we get:

Xe =@ X ta; --(3.18) _
¢,: Parameter of the model is represented in the form of a matrix represented by the following
equation:

@1 =pAp" .. (3.19)
and that:
Ay = diag(@11,92.1,--- - Pr1) .. (3.20)
and that:
a;~N(0, )
¥ =pDpT .. (3.21)
D =diag(oc?,06%,...... af)

By knowing the model that the series follows, it is possible to predict future periods and know
the efficiency of the models using statistical criteria that the researcher can determine.

437 | Vol.27, No.2, 2023



2023 Jlu 2055 < 27 . SHds OE 44,188 50 diudly 32 3Gl 858

4-Applications
4-1.  Introduction:

Implementation of the practical applied aspect requires obtaining data that is a basic pillar
in reaching reliable results, and this is done through the quality of data that achieves the
applied aspect.

The application methodology in this research was represented in studying the analysis of the
principal components of time series and applying the Box-Jenkins models (ARIMA) where
data were obtained on the productivity of electrical energy. With monthly productivity for a
year, (5) units of production, with (57) views for each series, and the results were extracted
using (STATGRAPHICS 19).

4-2.  Data Analysis: Data analysis includes a number of steps:

4-2-1. ldentification

The identification process is carried out first by test the time series, is it stationary with the
mean and variance, and through the diagram we can see the nature of the fluctuation in it,
where the data of the monthly produced quantity of electricity as shown in Figure (1), To test
the mean and variance of the time series (5) were plotted with time as follows:

Time Series Plotfor GT_2 Time Series Plot for GT_1

x1000) x1000) _

25f 254

1/50 151 1/52 1/53 1/54 155 1/50 151 1/32 1/53 1/54 155
Time Series Plot for GT_4

x wuug -

1/50 151 1/52 1/53 1/54 155 1/50 151 1/52 1/58 1/54 155

Time Series Plotfor GT_5

1,’.50 - 1,‘I51 1,".& 1,; 1fI54 1,:55
Figure (1): Time Series Plots

It is noticed from the previous figures that the time series are non-stationary in the mean and

variance, and it can be ascertained about the progress of the series by observing the

autocorrelation (2) and partial autocorrelation (3) functions of the series (5) and as follows:
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Estimated Partial Autocorrelations for GT_5
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Figure (3): Partial Autocorrelations

4-2-2. Principal Component Analysis

To reduce the number of studied variables and without losing a large amount of information,
principal component analysis was relied on to analyze a certain number of variables, we note
in table (1) and Figure (4) that (3) principal components were extracted because (the
eigenvalue has greater than the correct one) with an interpretation rate of 82.976%, which is a
high percentage.

Table (1): Explain Total Variance

Component | Eigenvalue | Percentof | Cumulative
Number Variance Percentage
1 1.68314 33.663 33.663
2 1.45174 29.035 62.698
3 1.01395 20.279 82.976%
4 0.622194 12.444 95.420
5 0.228982 4.580 100.000

Scree Plot

Eigenvaue
e o 8 2 =
(] o -] M o
T T T
i / 1 I

o
R
|

0 1 i 3 4 5
Component

Figure (4): Scree Plot

4-2-3. Application using ARIMA models on the extracted components:

In this section, ARIMA models were used on the extracted data of the three principal
components:

4-2-3-1 Application using ARIMA models on the first component:

440 | Vol.27, No.2, 2023



2023 Jleo 2.05le5 ¢ 27 . S5 OB 43350 drudly 3 361 B35S

Time Series Plot for PCOMP_1

PCOMP_1

2.7k ) . , . )
1/50 1/51 1/52 1/53 1/54 1/55

Figure (5): time series plot for first component

We notice in the figure (5) that the series is non-stationary, which indicates that the mean is
non-stationary over the time, to know and make sure that the series is stationary or not? the
autocorrelation function and the partial autocorrelation function of the chain were examined

as in the two figures (6) & (7):

Estimated Autocorre lations for PCOMP_1

Autocorrelaions

Hﬁ - ;
oz m I = B

N 1

lag

Figure (6): ACF for first component

E stimated Partial Autocorrelations for PCOMP_1

06|

o |

Partial Autocorrelations
o
]

0 4 8 12 16 20

o] 4 8 12 16 20
lag

Figure (7): PACF for first component

We note that the ACF autocorrelation function is that the first shifts in the values of the

autocorrelation coefficients are significant outside the confidence limits
the partial autocorrelation function PACF is outside the confidence limits.
4-2-3-2 Randomization test:

(+0.259), and only

The ljung-box test was used to test the hypothesis shown in Table (6). Since the p < 0.05, we
reject the null hypothesis and this indicates that the time series of PC1 is not random.
Table (6): The ljung box test to test the randomness of the time series of PC1

Hypothesis testing test statistic P-value
Hof t!me series is random 129.72 0.000
Hi: time series is not random
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4-2-3-3 Achieving Stationary for the time series (PC1):

It was found through the drawing of the original time series for the PC1 that it is non-
stationary, and to make the series stationary around the variance and about the mean, it also
contains seasonal effects, as it was found that the values in the periods (24,12) are repeated,
which indicates that the time series is seasonal and that it repeats itself every (12) months<:
After several attempts to make the time series stable, we first take the first seasonal difference
and the model is doubly seasonal as in Figure (8), the autocorrelation coefficients (ACF) and
partial autocorrelation (PACF) were drawn, as most The values are within confidence limits
as shown:

Time Series Plot for adjusted PCOMP_1

o4

adjusted PCOMP_1

/50 151 1/52 1/53 1/54 1/55

Figure (8): plot the first component time series transformed (first seasonal difference)

Estimated Autocorrelations for adjusted PCOMP_1
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Figure (9): plot of the ACF of the transformed series (first seasonal difference)

Estimated Partial Autocorrelations for adjusted PCOMP_1
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Figure (10): plot of the PACF of the transformed series (first seasonal difference)

After drawing the autocorrelation function (ACF) and the partial autocorrelation function
(PACF), we notice that each of the two curves, the values of their coefficients, decrease
gradually with the increase of the displacement periods and fall within the confidence range
so that the time series is considered stable.

4-2-3-4 Randomization test after taking the first difference:

We note in the table (7) that after taking the necessary transformations (first seasonal
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difference) the data of series PC1 is random.
Table (7): ljung & box test to test the randomness of the modified time series after taking the
first seasonal difference.

Hypothesis testing test statistic p-value
Ho: time series is random 16.8533 0.533209
H,: time series is not random

4-2-3-5 Choosing the appropriate model for the time series:

In this step, the appropriate model is determined after we have stationary in the time series of

the first component and determined its degree by studying the behavior of the ACF and the

PACF, (5) models were taken, in order to choose the appropriate model for the data that has

the lowest value for many (criteria) that were applied to them (RMSE), Akaike Information

Criterion (AIC), Baysian Information Standard (BIC) and Hanan-Queen Standard (HQC) as
in the table(8):

Table (8): Suggested models for the time series for the first component

Model RMSE AIC HQC SBIC
ARIMA(2,2,2)x(2,2,0)2 0.180955 -3.20849 -3.12491 -2.99343
ARIMA(2,2,0)X(2,2,0)2 0.259764 -2.55561 -2.49989 -2.41224
ARIMA(2,2,1)X(2,2,0)*2 0.257681 -2.53663 -2.46698 -2.35741
ARIMA(2,2,0)x(2,2,1)2 0.268249 -2.45624 -2.38659 -2.27702
ARIMA(2,2,1)x(2,2,1)2 0.266173 -2.43669 -2.35311 -2.22164

The appropriate model is the first model, ARIMA (2,2,2)x(2,2,0)*?, which was chosen
based on the Akaike Information Criterion (AIC), Hanan Quinn (HQC) and Schwartz
Bees Standard (SBIC).
4-2-3-5 Estimation:
After determining the appropriate model, the parameters of the ARIMA model
(2,2,2)x(2,2,0)*? were estimated, in order to know the significance of the estimated
parameters as in Table (9), We note that all the estimated parameters of the appropriate
model are significant (p<0.001):

Table (9): Estimation of Parameters Values for ARIMA Model (2,2,2)x(2,2,0)*2

Parameter Estimate Stnd. Error t P-value
AR(1) -0.00164876 0.0360998 -0.0456724 0.963934
AR(2) -1.00086 0.00372375 -268.777 0.000000
MA(1) 0.18658 0.0568016 3.28477 0.003017
MA(2) -0.808975 0.0584686 -13.8361 0.000000
SAR(1) -1.25691 0.0485947 -25.8652 0.000000
SAR(2) -1.00187 0.00661437 -151.469 0.000000

3-2-3-6 Forecasting

After determining the appropriate model for the time series and estimating its parameters,
we now reach the last stage, which is forecasting the production quantities for the first
component, which includes production units in the EGPS station. The forecast is on a

monthly basis for a Forecast of one year.

Table (10): Forecast values for the first component.

Period Forecast | Lower 95% Limit | Upper 95% Limit
10/54 1.7557 1.37763 2.13378
11/54 4.92998 4.14758 5.71237
12/54 4.31813 3.11083 5.52542

1/55 4.1786 2.45845 5.89874

2/55 5.05642 2.70481 7.40803
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3/55 5.18121 2.15156 8.21087
4/55 8.46858 4.75674 12.1804
5/55 10.8841 6.43624 15.3319
6/55 8.92454 3.65331 14.1958
7/55 10.6842 4.55098 16.8174
8/55 12.4425 5.4446 19.4403
9/55 12.3301 4.42555 20.2347

The table shows the future values that all the predicted values are between the upper and
lower bounds, with a confidence of 95%.

PCOMP_1

Time Sequence Plot for PCOMP_1
ARIMA(2,2,2)x(2,2,0)12
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e
nuonnoonqm ﬂwﬁw“%ﬂ Af

o actual
- forecast
95.0% limits

1/50

/52

1/54

Figure (11): forecast values for the first component and confidence limits.

The same steps above were applied to the second and third components, and the results

were as follows:

4-2-4  ARIMA models on the Second Component:
Table (11): Suggested models for the time series for the second component

Model RMSE AIC HQC SBIC
ARIMA(2,2,2)x(2,2,0012 | 0514273 | -1.11947 | -1.0359 | -0.904417
ARIMA(2,2,2)x(2,2,1)12 | 0518498 | -1.06802 | -0.970516 | -0.817124
ARIMA(2,1,0)x(2,2,2)12 | 0527868 | -1.06729 | -0.983713 | -0.852234
ARIMA(2,2,2)x(2,2,2)12 | 0.528351 | -0.995287 | -0.883849 | -0.708543
ARIMA(1,0,00x(2,2,2)12 | 0.567394 | -0.957964 | -0.888314 | -0.778749

After

determining the appropriate model, the parameters of the ARIMA model

(2,2,2)x(2,2,0)*? were estimated, in order to know the significance of the estimated

parameters as in Table (12):

Table (12): Estimation of Parameters Values for ARIMA Model (2,2,2)x(2,2,0)12

Parameter Estimate Stnd. Error t P-value
AR(1) -0.578814 0.0740673 -7.8147 0.000000
AR(2) -0.973181 0.0424652 -22.9172 0.000000
MA(1) 1.47241 0.0837192 17.5875 0.000000
MA(2) -0.580915 0.0693088 -8.38154 0.000000

SAR(1) -0.00814576 0.0108006 -0.754196 0.457777
SAR(2) 0.997621 0.0105285 94.7545 0.000000
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Figure (12): The original time series and the predicted values in the
ARIMA(2,2,2)x(2,2,0)12 model.

Residual Autocorrelations for adjusted PCOMP_2
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Figure (13): Autocorrelation of the residuals of the ARIMA (2,2,2)x(2,2,0)12 model.
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Figure (13): The PACF of the residuals of the ARIMA (2,2,2)x(2,2,0)** model.

Table (13): Forecast values for the second component.

Period | Forecast | Lower 95% Upper 95%
Limit Limit
10/54 | 2.54565 1.47466 3.61664
11/54 | -3.80888 -4.88127 -2.73649
12/54 | 1.72324 0.601445 2.84504
1/55 | 9.22223 7.69154 10.7529
2/55 | 9.44044 7.78468 11.0962
3/55 | 4.86993 3.17778 6.56208
4/55 | 9.21663 7.37225 11.061

445 | Vol.27, No.2, 2023



2023 Jlu 2.653 ¢ 27 . Sy

OB 43350 drudly 3 361 B35S

5/55 | 8.86193 6.67385 11.05

6/55 | 7.68736 5.49922 9.8755
7/55 | 10.6652 8.44787 12.8826
8/55 | 16.1437 13.5107 18.7766
9/55 | 16.3141 13.623 19.0051

4-2-5 ARIMA models on the Third Component:
Table (14): Suggested models for the time series for the third component

Model RMSE AlIC HQC SBIC
ARIMA(2,1,2)x(2,2,0)12 0.399718 -1.62347 -1.53989 -1.40841
ARIMA(2,1,2)x(2,2,1)12 0.399472 -1.58961 -1.4921 -1.33871
ARIMA(2,1,2)x(2,2,2)12 0.401984 -1.54198 -1.43055 -1.25524
ARIMA(2,0,1)x(2,2,0)12 0.471664 | -1.32754 | -1.25789 | -1.14832
ARIMA(0,0,2)x(2,2,0)12 0.489263 -1.28936 -1.23364 -1.14599

Table (15): Estimation of Parameters Values for ARIMA Model (2,1,2)x
Parameter Estimate Stnd. Error t P-value
AR(1) 0.870261 0.0779859 11.1592 0.000000
AR(2) -0.971534 0.0530477 -18.3143 0.000000
MA(1) 1.56539 0.0686402 22.8057 0.000000
MA(2) -0.630029 0.0566347 -11.1244 0.000000
SAR(1) -1.83538 0.0763487 -24.0394 0.000000
SAR(2) -0.983574 0.013598 -72.3324 0.000000
ARIMA(2,1,2x(2,2,0)12

PCOMP_3
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Figure (15): forecast values for the third component and confidence limits.
Table (16): Forecast values for the third component.

Period | Forecast Lowe_,\r 95% Uppgr 95%
Limit Limit
10/54 | -2.91658 -3.74641 -2.08675
11/54 | -2.02813 -2.89566 -1.16059
12/54 | 0.756745 | -0.261128 1.77462
1/55 | -0.338919 -1.54959 0.871748
2/55 -2.90106 -4.11173 -1.69039
3/55 | -0.533547 -1.92745 0.860362
4/55 -1.70038 -3.24026 -0.160496
5/55 -5.29098 -6.83161 -3.75035
6/55 3.53251 1.87033 5.1947
7/55 4.80126 3.08114 6.52139
8/55 1.48514 -0.256761 3.22704
9/55 | -0.226752 -2.11262 1.65911
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4-2-6. Comparison between the models in components:
Based on (RMSE) to comparison between the selected models in each component’s
component, as shown in the table (17):
Table (17): Comparison of the extracted models
NO. Components Models RMSE
1 | First component ARIMA(2,2,2)x(2,2,0)12 | 0.180955
2 Second component | ARIMA(2,2,2)x(2,2,0)12 | 0.514273
3 | Third component ARIMA(2,1,2)x(2,2,0)12 | 0.399718
We notice in the table (17) that the first component series model ARIMA(2,2,2)x(2,2,0)12
ranks first, the third component series model ARIMA(2,1,2)x(2,2,0)12 ranks second, and the
second component series model ARIMA(2,2,2)x(2,2,0)12 ranks third.
4-2-7. Select the best model and forcasting data of EGPS :
In this section, the best model is selected, which is (ARIMA(2,2,2)x(2,2,0)12) based on the
statistical criteria in table (17), and the data on electric power production for the city of Erbil
were forcasting for a period of (12) months for 2022, the table (18) and graph (16) show that.
Table (18) Forecast Table for EGPS
Model: ARIMA(2,2,2)x(2,2,0)12 with constant

0] 0]
Period | Forecast Lowgr 95 & Uppe_r 95 &
Limit Limit
Period Forecast Limit Limit

58.0 2423.14 2345.45 2500.83
59.0 2845.58 2724.93 2966.23
60.0 2579.56 245411 2705.0
61.0 2794.95 2669.5 2920.39
62.0 2370.52 2235.31 2505.72
63.0 2820.57 2637.44 3003.69
64.0 2946.14 2724.83 3167.46
65.0 2364.79 213457 2595.01
66.0 2783.37 2549.49 3017.24
67.0 3415.87 3161.04 3670.7
68.0 3793.02 3488.19 4097.86
69.0 3627.24 3285.36 3969.11

Time Sequence Plot for EGPS
ARIMA(2,2,2)x(2,2,0)12 with constant
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Figure (16): forecast values for the best model ARIMA(2,2,2)x(2,2,0)12

4-2-8. Conclusions:

1- In terms of time series models, we note that the estimated models are close to each other,
which means that it can be relied upon in forecasting electrical energy data.

2- There are seasonal effects on the data of 12.

3- It can be concluded that the application of Box Jenks models on the extracted components
data gave good results in terms of predicting data.
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4-The main components extracted have importance in terms of order (the first component,
then the second component ... etc.) and here we note that the estimated model for the first
component has less RMSE.

5-The best proposed model for forecasting electrical energy production data in the city of
Erbil is: ARIMA(2,2,2)x(2,2,0)12.
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