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Abstract:

Traffic accidents cause injuries and deaths, but also cause material damage to society. Therefore, predicting and
identifying the causes of traffic accidents is necessary and important to reduce these losses. The main objective
of this study is to develop an ARIMA time series model to investigate and analyze the number of traffic
accidents and the number of deaths in traffic accidents in the lIragi Kurdistan Region according to monthly
during the years (2014-2021) and monthly forecast for 2022. Data were obtained from Erbil General Directorate
of Traffic. The outcomes demonstrated that the series had seasonal traits. Several models were tested, and the
best findings were chosen based on the minimal statistical standards (RMSE, MAE, and MAPE) used for
comparison. The best results were we found SARIMA (1,1,1) (0,1,1)12 models for the number of accidents and
SARIMA (0,1,1) (1,1,2)12 models for the number of deaths.

Finally, using the best models, we made a monthly forecast for the number of accidents and deaths. We can say
that the rate has not significantly decreased for the forecast period, so the government should develop better and
more detailed plans to reduce traffic accidents.

Keywords: SARIMA, Forecasting, Traffic Accidents.

1.Introduction:

Time series forecasting uses knowledge of past values and patterns to predict future behavior.
Typically, trend analysis, periodic fluctuation analysis, and seasonality issues are included. As
with any other way of forecasting [16]. Traffic collisions are the leading cause of death and
injury worldwide. Highway-related crashes kill more than 1.2 million people per year and
injure up to 50 million more. By 2030, highway-related crashes are expected to be the world's
fifth biggest cause of death. In addition to the death and injury figures, highway crashes cause
incalculable agony and suffering, as well as billions of dollars in medical bills and missed
productivity. Disorderly driving, unlawful speeding, drunk driving, bad weather, mis driving,
and so on are the most common causes of road accidents [10]. Forecasting traffic accidents,
damages, and fatalities is a crucial responsibility for traffic safety planners. These forecasts
are typically helpful for understanding accident patterns and the effectiveness of current
safety actions. That is, safety planners are interested in evaluating present policies and safety
measures by examining future accident trends and applying corrective steps [2]. Finding a
suitable forecasting model for a traffic accident demand is not an easy process because there
are different approaches and models for studying time-series data. Despite the fact that
various forecasting methods have been created, one of the most well-liked and frequently
used models is the Box-Jenkins model. One method for anticipating data ranges based on
inputs from a particular time series is the Box-Jenkins Model. Moving averages, auto
regression, and independent component analysis are the three concepts it employs to predict
data. The letters p, d, and q stand for these three concepts. Each principle is used in the Box-
Jenkins analysis, and the output is an ARIMA (p, d, g) [16]. A seasonal pattern occurs when
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seasonal factors, such as the time of year or the day of the week, have an impact on a time
series. Seasonality occurs at set, definite intervals [6].

Two forecasting models for traffic accidents, the number of accidents, and the number of
deaths from road accidents in the Kurdistan Region were developed in this study using
information from the General Directorate of Traffic in the governorate of Erbil (2014-2021).
The Statistical analysis using program (Statgraphics V. 19).

Methodology:

2.1 Time series:

A time series is a collection of observations made over a period of items in a specific
arrangement. The statistical process for analyzing suc a series of data is known as "time series
analysis" [5]. Components of the Time Series: Long-term movements in the mean are referred
to as a trend (Tt). Seasonal effects (It), or calendar-related cyclical changes, Cycles (Ct): other
cyclical fluctuations (such as business cycles), and I—the value of the irregular component
(Residuals): other random or systematic fluctuations [3].

Yt :Tt -I—St ‘I‘Ct ‘I‘It ...... (21)

Analytical Objectives

The main goals of time series analysis are as follows:

1. Constructing input-output models that outline the processes that underlie the time series'
corresponding difference equation.

2.Using the developed models, predicting time series values for the future from the past
values.

3.Design of control systems based on the findings of the analysis.

According on where the observed results came from, predicting future values of time series to
use a time-domain or bandwidth method can also help with effective operations and
production monitoring, failure detection, product quality control, and other related tasks.
After been built and tested, the time series model may be used to predict future time series
values at different time intervals d. obviously, forecasting only provides an estimate of the
future data values that the input time series will still have [13].

2.2 Stationary Time Series Models:

Stationary stochastic processes are a significant subset of stochastic processes. A time series
is considered stable if there is no event of a system failure in the mean (no trend), no
systematic change in the variance, and all precisely periodic fluctuations have been eliminated
[4].

In theoretical investigations of time series models, stationary is extremely important. There
are two types of stationary: strictly stationary and weakly stationary. Random processes that
are just first- and second-order probability distribution time stable are referred to be "weakly
stationary”. Random processes that are strictly stationary have probability distributions that
are consistent over time. Some time series exhibit non-stationary, which occurs in linear or
nonlinear systems, as fluctuations in the system's representation across time. When there is a
smoothly shifting trend component with shifts in the mean as well as fluctuations in the
variance of the process, non-stationarities occur [7]. If a time series, y;, is not stationary but
has a first difference, we will term it homogeneous non stationary. W= y;- v 1= (1-B)y; or
higher-order differences, W, = (1 — B)?y, ,produce a stationary time series [12].

2.3 Autocorrelation Function (ACF):
The coefficient of correlation between z; and z;_,, is:
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_ Cov(Zp.Zp—k) _Yk
Pk = aro) Var@es 1o e (22)
It's named the autocorrelation function since it's viewed as a function of lag k [9].

2.4 Partial Autocorrelation Function (PACF):

The partial autocorrelation function is the correlation function between x; and x;,, after the
intervening variables x;yi, X¢s+2,......, Xt+x—1 have been removed, . This is frequently
followed by a conditional autocorrelation as follows:

Corr (xt, kaf Xpgqy eovnnnnns . xH;{_l) (23)
In time series analysis, this correlation function is known as the (PACF) [1].

2.5 Some Time Series Models:

I.Autoregressive of order (P) Model:

Suppose that {a, } is a purely random process with mean zero and variance o2 . Then a
process {Z; } is said to be an autoregressive process of order p (abbreviated to an AR(p)
process) if

Ze = 01Z¢ 1+ 02Z¢ 5+ + OpZe_py +a; e 2.4)

Where { ©,,0,, ..., D, } are unknown parameters. a; : White noise purely random variable [4].

I1.Moving Average Model of order (q)

The current white noise term and the g most recent previous white noise terms are combined
linearly to form a moving average (MA) process of order g.

Zy =ar — 0ja¢; —0a, — -+ — Ogarq ... (2.5)

Where ( 64,65, ..., 6,) are unknown parameters. a; white noise purely random variable [11].

I11.Mixed Autoregressive Moving Average Models

A useful class of time series models is produced when MA and AR procedures are combined.
With p AR terms and g MA terms, an ARMA process of order is a mixed
autoregressive/moving-average process (p, q). It is supplied by

Ze = 01Z¢ 1+ 022 5+ 0pZ¢ p+a; — 012,y —Bra, 5 —- —0Bga;_4 oo (2.6)
where {a;} is a purely random process with mean zero and variance o2
The importance of ARMA processes comes from the fact that a stationary time series can
often be accurately simulated by an ARMA model with fewer parameters than a pure MA or
AR process. This is a classic illustration of the Parsimony Principle. As a result, we seek a
model with the fewest number of parameters that can well describe the data [4].

IV.ARIMA model:

Both types of models are fitted to time series data in order to offer generalized information
and predict upcoming points in the series. The Auto Regressive Integrated Moving Average
(ARIMA) is a generalization of the ARMA model. The ARIMA parameters (p, d, and q) are
all positive numbers that represent the autoregressive model (number of time lags), the degree
of differencing (number of times past values were subtracted from the data), and the order of
the moving average model, respectively [8].

2.6 The Box-Jenkins Procedures

Box and Jenkins made a significant contribution by presenting a generic technique for time-
series forecasting that highlights the significance of iteratively choosing an effective model.
Indeed, in many fields of statistics, the iterative method to model development that they
proposed has subsequently become conventional. Box and Jenkins have shown how
differencing may be used to convert ARMA models to ARIMA models, allowing them to deal

384 | Vol.27, No.1, 2023



2023 L 1.85le5 ¢ 27. 55 OB a3y e dadl; 34 35515 55858

with non-stationary data. Box and Jenkins also demonstrate how to include seasonal
components in seasonal ARIMA (SARIMA) models. ARIMA models are sometimes referred
to as Box—Jenkins models because of all of these essential contributions.

In a nutshell, the following are the main steps in creating a Box-Jenkins forecasting
model:

1-Model identification: Examine the data to determine which ARIMA process class looks to
be the most appropriate.

2-Estimation: Calculate the parameters of the model you've chosen.

3-Diagnostic checking: Check the residuals from the fitted model to verify if they are
sufficient.

4-Consideration of alternative models if necessary: Alternative ARIMA models may be
explored until a good model is identified if the initial model appears to be unsatisfactory for
some reason. When such a model is discovered, calculating forecasts as conditional
expectancies is usually quite simple [4].

2.7 SARIMA model:

SARIMA model is the product of seasonal and non-seasonal polynomials and is designated
by SARIMA (p, d, q) x(P, D, Q)., where (p, d, q) and (P, D, Q) are non-seasonal and seasonal
components, respectively with a seasonality‘s’. SARIMA model was defined at Equation
#(B%) 0(B)(1-B*)” (1-B)* y, = 0(B*) 8(B)=; ..... (2.7)

where: ®@ and @ = autoregressive (AR) parameters of seasonal and non-seasonal components,
correspondingly; ® and 6 = moving average (MA) parameters of seasonal and non-seasonal
components, respectively; B = backward operator, B (y;) = v:—;; (1-B)? = D™ seasonal
modification of season s; (1-B)? = d™ non-seasonal difference; e, = an individualistically
distributed random variable; P and p = the orders of the AR components; Q and g = the orders
of MA components; D and d are difference terms [15].

2.8 Forecasting:

One of the most fascinating and useful aspects of time-series analysis is the extrapolation of
the model beyond the sample size T to give point and interval estimates of values that will be
seen at a later period. This is referred to as forecasting, a division of the more general concept
of prediction. One method for anticipating data ranges based on inputs from a particular time
series is the Box-Jenkins Model. Moving averages, differencing, and auto regression are the
three methods it employs to forecast data. These three principles are denoted by the letters p,
d, and g. Each principle is employed in the Box-Jenkins analysis, and the results are displayed
as an autoregressive integrated moving average, or ARIMA (p, d, g) [14].

2:(L) = E(Zss; /26,241, .., Z1) o (2.8)

Where: {Z;4,;} is the forecasting values with lead time (I) and actual time (t).

3. Applications

A= Number of traffic Accidents

B= Number of Death Accidents

Accidents represent Number of traffic accidents and number of deaths taken from the records

of the State Traffic Administration General Directorate of Traffic in Erbil Governorate where

the series according to the study how much it is.

Table (1) and (2) shows the data number of traffic accidents and number of deaths January

2014 to December 2021 and 96 months long.

Table 1. monthly average Traffic Accidents in the Kurdistan Region for the period 1/1/2014
—31/12/2021
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Months | 2014 2015 2016 2017 2018 2019 2020 2021
1 447 311 341 336 301 372 355 266
2 410 329 262 304 323 292 311 252
3 427 383 334 347 316 337 155 316
4 405 397 318 355 356 334 124 325
S 432 429 370 381 281 320 198 350
6 430 437 385 330 393 370 200 401
7 330 408 377 431 393 426 231 377
8 378 458 474 440 440 410 249 392
9 376 377 469 441 410 467 276 428

10 363 282 408 396 371 475 327 408
11 349 319 380 333 349 414 280 353
12 312 355 316 291 275 262 198 252

Table 2: monthly average Death Accidents in the Kurdistan Region for the period 1/1/2014 —

31/12/2021
Months | 2014 2015 2016 2017 2018 2019 2020 2021
1 43 60 53 49 50 44 31 41
2 62 40 51 40 34 39 23 43
3 69 65 58 42 41 37 26 42
4 82 76 66 66 55 27 37 48
5 97 86 49 68 55 46 44 42
6 72 91 83 62 55 64 35 57
7 67 101 76 49 61 56 35 43
8 71 90 81 76 59 51 38 71
9 87 83 100 85 63 63 44 89
10 51 66 71 57 73 57 50 54
11 50 53 68 45 65 63 46 67
12 50 47 61 51 44 28 23 26

3.1 Data Description:

When we look at the table (3), we see that the highest number of traffic accidents is (475) in
October 2019 and the lowest number is (124) in April 2020. And the highest mortality rate
(101) in July 2015 and the lowest (23) people in February 2020, the annual average humber of
traffic accidents is (350.771) and the number of deaths is (56.7813).

Table 3: Descriptive data for number of Traffic accidents and number of Death Accidents

Average | Standard deviation Maximum Minimum
Traffic Accidents | 350.771 71.2121 475.0 124.0
Death Accidents | 56.7813 18.0363 101.0 23.0

3.2 Analyzing Time Series:
Analyzing of time series for Traffic Accidents and Death Accidents in order to obtain the best
model. There are several steps of achieving it:

3.3 Plotting the time series data

The first step in time series analysis is drawing the series in order to identify some of the
initial characteristics over time, such as oscillations, fluctuations, and note if there is a general
trend or not. Every year, these variations occur on a regular basis but at a different rate. This
pattern can also be recognized through the variations that suggest the existence of a seasonal
component that repeats itself every 12 months Figure (1).
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Figure 1: Time series plot of the Original Data of Traffic Accidents and Death Accidents in

Kurdistan

To prove of ascertaining about the stationary of the time series, we have drawn the
Autocorrelation and partial Autocorrelation functions, as shown in Figure (2) and (3):
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Figure 2: ACF and PACF of the Original Data Traffic Accidents of Monthly Time Series
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Figure 3: ACF and PACF of the Original Data Death Accidents of Monthly Time Series

In Figures (2) and (3), we can see highs and lows in the value of ACF contributions. For
traffic accidents in this case, 3 of the 24 autocorrelation coefficients are statistically
significant at the 95.0% confidence level. On the other hand, the PACF shows a large peak at
first lag with a rapid decline thereafter, at the 95.0% percent level of confidence, 2 of the 24
auto correlation coefficients in this instance are statistically significant. At the 95.0 % percent
confidence level, 7 of the 24 auto - correlation coefficients in this case are statistically
significant for death accidents. On the other hand, the PACF shows a large peak at first lag
with a rapid decline thereafter, In this instance, the 95.0% percent level of confidence
identifies 2 of the 24 partial autocorrelation coefficients as statistically significant. It implies
that the time series might not be fully random (white noise). This suggests a non-stationary It
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can be plainly seen that the data is non-stationary and contains seasonal by the behavior of
autocorrelation functions and partial autocorrelation functions. Given that there is a seasonal
effect, the Box-Pierce test rejects the null hypothesis, according to which all autocorrelation
function coefficients are equal to zero (P-value = 0.0).

3.4 Verifying stationary:

By modifying data until it seems stationary, stationary data is the first stage of the Box-
Jenkins strategy to building models.to get stationary of the series and after doing many trials,
we conclude that.

a-For Traffic Accidents, the best procedure is to take the first difference for non-seasonal
and The removal of a non-stationary about mean (trend) and variance is the first difference
between seasonality and Periodic log transform, as presented in Figures (4) and (5)
respectively. The value of the Box-Pierce statistic was 32.3182 (p-value = 0.119295)
confirming the stationarity and the randomness of the series. Since the P-value for this test is
greater than to 0.05, we cannot reject the hypothesis that the series is random at the 95.0% or
higher confidence level.

Time Series Plot for adjusted traffic accidents.

adjusted traffic accidents.

Figure 4: The Time Series After First Non-Seasonal Difference and the Natural Logarithm of
Monthly Traffic Accidents

Estimated Autocorrelations for adjusted traffic accidents. Estimated Partial Autocorrelations for adjusted traffic accidents.

1F T T T T ] 1F T T T T ]

Autocorrelations

06

02

0.2

-

DD,D_DDDDED

D o O=0__0

}:

Partial Autocorrelations

0.6

0.2

0.2

0.6

0.6

16 s s s s ] B L L L L ha

lag lag

Figure 5: ACF PACF of the Monthly Traffic Accidents After First Non-Seasonal Difference
and the Natural Logarithm

b. For Death Accidents, the ideal method is to remove a non-stationary about mean (trend)
and variance by taking the initial difference for non-seasonal and power transformations. As
presented in Figures (6) and (7) respectively. The value of the Box-Pierce statistic was
34.3257 (p-value = 0.0790443) confirming the stationarity and the randomness of the series.
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We cannot rule out the null hypothesis that all autocorrelation function coefficients are equal
to zero because the P-value for this test is larger than or equal to 0.05.

Time Series Plot for adjusted death accidents
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Figure 6: The Time Series After First Difference and the power transformation of Monthly
Death Accidents
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Figure 7: ACF PACF of the Monthly Death Accidents After First Non-Seasonal Difference
and the power transformation

3.5 Choosing Fitting Model:

For fitting ARIMA models to time series, Box and Jenkins describe a development has been
widely. After obtaining stationary, we proceed to build a suitable model for the adjusted
series. Model selection was made by depending on partial autocorrelation and the regression
coefficient. We apply the three performance measurements; RMSE, MAE, and MAPE as
mentioned in the theoretical section to select the best model from a set of adequate models.
Table (4.1) and (5.1) shows different models of SARIMA and the values of the estimated
criteria.

a.For Traffic Accidents, From Table 4.1, it is clear that the best and adequate model is
SARIMA(1,1,1)(0,1,1)12 having the smallest values of criteria compared with the others. The
parameters estimation of the specified model is presented in table 4.2 shows that all
parameters of non-seasonal and seasonal components are statistically significant.

Table (4.1) Proposed models for monthly Traffic Accidents

Significant

Model RMSE MAE MAPE Pa‘-iameters
SARIMA(L,1,0)x(1,1,2)12 48.3026 33.4041 11.2234 No
SARIMA(L,1,1)x(0,1,1)12 46.4507 32.7771 11.1746 Yes
SARIMA(L,1,1)x(1,1,1)12 46.8564 33.0435 11.2779 No
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SARIMA(L,1,1)X(2,1,1)12 47.0616 33.0184 11.2968 No
SARIMA(L,1,2)x(1,1,1)12 47.4745 33.4857 11.225 No
SARIMA(0,1,1)x(1,1,2)1, 47.7304 32.9448 11.1628 No

Table 4.2: Parameter Estimation values of the model SARIMA (1,1,1)(0,1,1)1> Model
Estimate Model Coefficients

Parameter |Estimate Standard. Error t P-value

AR(1) 0.707606 0.111269 6.35942 0.000000
MA(1) 0.924092 0.0510585 18.0987 0.000000
SMA(1) 0.852648 0.0483174 17.6468 0.000000

b. For Death Accidents, From Table 5.1, it is clear that the best and adequate model is
SARIMA(0,1,1)(1,1,2)12 having the smallest values of criteria compared with the others. The
parameters estimation of the specified model is presented in table 5.2 shows that all
parameters of non-seasonal and seasonal components are statistically significant. Positive
numbers mean an increase in the death rate and negative numbers mean a decrease in the
death rate due to traffic accidents according to the seasons of the year. In parameter
estimation, positive numbers mean increased mortality and negative numbers mean decreased
mortality in a given season
Table (5.1) Proposed models for monthly Death Accidents

Model RMSE MAE MAPE Significant

Parameters
SARIMA(L,1,0)X(L,1,2)12 11.3118 9.01799 17.6966 Yes
SARIMA(L,1,1)x(0,1,2)1» 11.3253 8.89415 18.0937 No
SARIMA(LL,1)X(1,1, 1)1 11.5441 9.18538 10.1122 No
SARIMA(L1,1)x(2,1,2)1» 10.6099 8.50378 17.2767 Yes
SARIMA(L,1,2)X(L,1, 1)1z 11.4022 8.90565 18.0572 No
SARIMA(0,1,1)X(L,1,2)12 10,5262 8.41637 16.4533 Yes

Table 5.2: Parameter Estimation values of the model SARIMA (0,1,1)(1,1,2),, Model
Estimate Model Coefficients

Parameter Estimate Standard Error t P-value
MA(1) 0.618383 0.0872545 7.08712 0.000000
SAR(1) -0.840888 0.129209 -6.50796 0.000000
SMA(1) -0.185271 0.0777796 -2.382 0.019624
SMA(2) 0.868699 0.0525907 16.5181 0.000000

3.6 Model Diagnostic Checking:

After identifying and estimating the potential SARIMA models, we want to evaluate how well
the chosen models fit the data. Analyzing parameters and residuals is part of the model
diagnostic checking process.

From the residual plots of ACF and PACF, as shown in Figures (8) and (9), for traffic
accidents and death accidents it is clear that all values of residuals at all lags were placed
within the tolerance interval at 95% confidence limits. This explains why there is no
discernible association between the residuals and why each residual has a minor relationship
to its standard error. On the other hand, the cost of a traffic collision is the Box-Pierce test
was 15.952 (p-value = 0.77234). And for death accidents the value of the Box-Pierce test was
21.0193 (p-value = 0.395996), for this tests are greater than (0.05), concluding that the
hypothesis of white noise at the 95% or higher confidence level cannot be rejected.

It is a suitable model for these data because this indicates that residuals are randomized white
noise.
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Residual Autocorrelations for adjusted traffic accidents. Residual Partial Autocorrelations for adjusted traffic accidents.
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Figure 8: The residuals ACF and PACF for SARIMA (1,1,1)(0,1,1)12 for Traffic Accidents
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Figure 9: The residuals ACF and PACF for SARIMA (0,1,1) (1,1,2)12 for Death Accidents

3.7 Forecasting:

After going through the steps of identifying the appropriate models of data series traffic
accidents and death accidents, assessment of its features and examination of the models we
use the models to predict future values (Traffic incidents and death accidents for the coming
months), forecasting starting from January 2022 until December 2022. The lower forecast
limits and upper forecast for the forecasting under 95% confidence limits. All of the data that
was available between January 1, 2014, and December 31, 2021, was used to develop the
SARIMA model for forecasting purposes. The predicting monthly is shown in Table (6) and
Figure (10) (Traffic incidents and death accidents for the coming months) in Kurdistan
Region.

Table 6: Forecasting Values Using

SARIMA (1,1,1)(0,1,1)12 for traffic accidents SARIMA (0,1,1)(1,1,2)12 for death accidents
Period |Forecast| Lower 95% | Upper 95% Period | Forecast | Lower 95% Upper
Limit Limit Limit 95% Limit
1/2022 | 302.129 217.794 419.12 1\ 2022 41.8692 17.951 65.7875
2/2022 | 276.06 182.147 418.394 2\ 2022 36.035 10.4343 61.6357
3/2022 | 283.713 178.358 451.302 3\ 2022 40.7071 13.5279 67.8863
4/2022 | 279.477 170.427 458.304 4\ 2022 49,5878 20.9169 78.2587
5/2022 | 305.07 182.165 510.9 5\ 2022 51.7182 21.6295 81.807
6/2022 | 330.93 194.539 562.943 6\ 2022 58.06 26.6173 89.5028
7/2022 | 337.629 196.034 581.498 7\ 2022 52.8136 20.0728 85.5544
8/2022 | 364.328 209.361 633.998 8\ 2022 | 63.0948 29.1055 97.0841
9/2022 | 374.081 213.043 656.849 9\ 2022 73.024 37.8304 108.218
10/2022| 356.264 201.262 630.642 10\ 2022 | 55.6174 19.2595 91.9754
11/2022| 324.054 181.706 577.92 11\ 2022 | 55.5958 18.1096 93.082
12/2022| 254.448 141.678 456.979 12\ 2022 | 33.6009 0.000 72.1823
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Figure 10: The Actual, Predicted and Forecasted Monthly Data of traffic accident People
Using SARIMA (1,1,1)(0,1,1)12 Model and death accident People Using SARIMA
(0,1,1)(1,1,2)12 Model in 2022

Conclusion:

Based on the results obtained in this study, we might come to the conclusion that there are
seasonal patterns in the time series of traffic fatalities and accidents in the Kurdistan Region
of Iraq. Also, after testing several models, we selected the two best models, SARIMA
(1,1,1)(0,1,1)12 for traffic accidents and SARIMA (0,1,1)(1,1,2)12 for the number of deaths
according to some statistical criteria such as (RMSE,MAE,MAPE).

Forecasting the number of traffic accidents is an important part of traffic management in a

given area, can have several positive effects on the area and its citizens. The problematic
months and seasons of the year can be identified to prompt the relevant authorities to take
action to combat the problems through changes in the road safety strategy.

Using the selected models, we forecast for the next 12 months and found that the number of

accidents and deaths did not decrease significantly during the forecast period, and we found
that most of the traffic accidents occur in spring and summer because people go to the
beaches in spring and in summer because it is school holidays people travel more between
cities and towns because the roads in the Kurdistan Region are bad and between some cities
the roads are one-side, so there are more traffic accidents in these two seasons than in the
other two seasons.
Finally, our suggestion to the Traffic Directorate is to pay more attention to traffic guidelines
and conditions and our suggestion to the Ministry of Municipalities is to make the roads two-
sided and repair the roads that exist between the provinces and major cities to reduce
congestion and reduce traffic accidents.
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