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Abstract 

Multicollinearity between independent variables occurs in 

multiple linear regression analysis characterized by high 

correlations, which complicates discerning individual 

variable effect, impacting model accuracy, stability, and 

interpretation of relationships. The research aims to 

diagnose the multicollinearity problem between 

explanatory variables in the linear regression model and 

identifying the variables causing this problem based on the 

variance inflation factor (VIF), then estimation and 

evaluate the performance of three alternative methods, 

which are Ridge regression, principal components 

analysis, and Feedforward Neural Networks (FFNN) 

models with one and two hidden layers and application of 

the models to compressive strength data for high-

performance concrete. The results showed that Ridge 

regression and PCA effectively addressed multicollinearity 

problem, but the single hidden layer model FFNN showed 

superior predictive accuracy in estimating the compressive 

strength of high-performance concrete when comparing 

RMSE, MAE, and R2 values. 
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1. Introduction   

Multiple regression analysis is statistical methods used to study the linear association between 

a dependent variable and several independent variables. Its purpose is to identify and measure 

the direction and strength of the relationship between the variables under study. The effective 

use of the equation and estimated coefficients requires the availability of some assumptions, 

and the accuracy of these estimators depends on the validity of these assumptions. One of the 

assumptions is that there is no exact collinearity among the independent variables, also known 

as multicollinearity.  

Multicollinearity occurs between independent variables when there is a high correlation 

between the independent variables in the multiple regression models, which leads to difficulty 

distinguishing the effect of each variable on the model, affects the accuracy and stability of the 

model. In addition, multicollinearity leads to inflation of variance and difficulty interpreting the 

actual relationships between the variables. 

Ridge regression and principal component regression are two commonly used biased regression 

methods. The biased regression methods attack the collinearity problem by computationally 

suppressing the effects of the collinearity. Ridge regression does this by reducing the apparent 

magnitude of the correlations. Principal component regression attacks the problem by 

regressing Y on the important principal components and then parceling out the effect of the 

principal component variables to the original variables (Rawlings et al., 1998, p67). Artificial 

Neural Networks (ANN) has been widely used in prediction, modeling, and classification 

problems. It has the ability to fit any complex function through training. As a result, the effect 

of multicollinearity is no longer a problem because the flat area due to multicollinearity in the 

multiple regression line cannot be seen in Neural Network (Li & Wang, 2019,p6) (Chan et al., 

2022,p8). However, each method has its own set of strengths and limitations, and the decision 

which to use depends on the specific analysis objectives and criteria. 
 

2. Method and materials 

2.1Multiple Linear Regression 

Multiple linear regression analysis is performed by constructing a prediction model consisting 

of a dependent variable or a response variable y based on an assumed linear relationship with 

several k independent predictors (x1, x2,.., xk). (Rencher & Schaalje, 2008,p2). The model for 

multiple linear regressions with linear terms is 

y = β0 + β1x1 + β2x2 + ⋅ ⋅ ⋅ + βkxk + ε  ………..(1) 

A random error ε accounts for any factors not included in the model. The regression coefficients 

β0, β1, β2, . . . , βk represent the parameters, where β0 is the intercept and coefficient βj (j=1,2,..k) 

signifies the change in the expected value of y for a unit change in xj while keeping all other 

variables constant . The errors are assumed to be unobservable, independent random 

disturbances following a normal distribution with zero mean and constant variance, denoted as 

ε ∼ N(0, σ2). Under these conditions, the ordinary least squares (OLS) estimation method 

provides unbiased, consistent, and efficient estimates of the unknown parameters. (Doane & 

Seward, 2021,p475) 

Multiple linear regression analysis involves several basic assumptions: (1) linearity, (2) 

homoscedasticity (Var(ε𝑖)=σ2 for all i) (3) independence of errors ((Cov(ε𝑖ε𝑗)=0 for all i≠j) (4) 

normally residuals(εi ∼ N(0, σ2) and (5) No multicollinearity ((Corr( xi, xj )≈0 for all i≠j). 

(Rawlings et al., 1998,p29) 
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2.2 Detecting the problem of multicollinearity: 

Multiple linear regression models that include two or more explanatory variables may 

encounter multicollinearity problems. Detecting the problem of multicollinearity means 

revealing the degree of multicollinearity, and its purpose is not the presence or absence of 

multicollinearity. The following points must be taken into consideration. 

Detecting multicollinearity depends on some basic rules, some informal and some formal, but 

the basic rules of thumb are all the same. Now we will look at some of these rules. We now 

consider some of these rules. (Gujarati & Porter, 2009,p320) 

1. High R2 value and non-significant estimated parameters of explanatory variables 

2.The high correlation coefficients between explanatory variables and the fact that the 

correlation coefficients between pairs of variables in diagnosing the problem of 

multicollinearity because the mutual relationship between three or more variables may lead 

to a high degree of multicollinearity, even though the correlations between pairs of variables 

are low. Therefore, the best procedure to measure the degree of multicollinearity is to 

calculate the Eigenvalues of the correlation matrix and its corresponding condition index, in 

addition to variance inflation factors (VIF) and variance decomposition rates. 

3.Tolerance and variance inflation factor: The variance inflation factor is the dominant 

approach to detect the presence of the multicollinearity problem. It measures the extent to 

which the variances of estimated regression coefficients are inflated when there is a linear 

relationship between explanatory variables. Can be found by relying on the coefficient of 

determination as in the following formula:- 

𝑉𝐼𝐹𝐽 =
1

1−𝑅𝑗
2      𝑗 = 1,2,3, … , p   …….(2)    

𝑅𝑗
2 : It represents the coefficient of determination of the explanatory variable Xj in multiple 

linear regression. 

P: Number of explanatory variables. 

Tolerance is calculated as the reciprocal of VIF  

𝑇𝑂𝐿𝐽 =
1

𝑉𝐼𝐹𝑗
    j = 1,2,3, … , p  ……(3) 

A low tolerance or high VIF indicates a high degree of multicollinearity between predictor 

variables. When the VIF value equals 1, it indicates no correlation among independent 

variables. A VIF value greater than one indicates a departure from orthogonally and typically 

suggests correlations among variables. If VIF falls between 1 and 5, it indicates moderate 

correlation among variables. The challenging value of VIF is between 5 to 10 as it specifies the 

highly correlated variables. If the VIF exceeds 5 to 10, multicollinearity among predictors in 

the regression model is present, and a VIF greater than 10 indicates weak estimation of 

regression coefficients due to multicollinearity. (Shrestha, 2020,p41)  

2.3 Ridge regression analysis 

When employing the least squares method with non-orthogonal data, it may lead to highly 

inaccurate estimates of regression coefficient as inflated variances and causing instability. This 



Mahmood.S.2024, 28 (5): 264-277                                                                     Zanco Journal of Human Sciences                                                                           

 

 
 267 

inflation is represented by the diagonal elements of the standard matrix. (Pati, 2020,p11), 

(Montgomery et al., 2012,p542). 

Several procedures have been developed for obtaining biased estimators of regression 

coefficients. Among them is ridge regression, first proposed by Hoerl and Kennard [1970a, b], 

consists of adding a constant quantity to the diagonal elements of the matrix   before taking its 

inverse, This leads to a biased estimator βR of β , known as the ridge estimator, according to the 

following formula: (Kutner et al., 2005), (Montgomery et al., 2012,p543,p184) 

�̂�𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑌 …… (4) 

k takes the value of (0<k<1), if  k = 0, the ridge estimator is the least-squares estimator. 

Where (�́�𝑋 is a diagonal matrix representing the eigenvalues values of the matrix 

The basic properties of the ridge solution include: (Duzan, 2020,p184) 

i. The sum of squared residuals  is a monotone which increases as a function of k 

ii. The ridge estimator is a linear transformation of the OLS method since 

�̂�𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑌) = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)�̂�  ………….(5) 

iii. 𝐸(�̂�𝑅) is a biased estimator of β. 

𝐸(�̂�𝑅) = (𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)�̂� ≠ 𝛽 ………….(6) 

iv. The constant k is denoted as the biasing parameter. The covariance of �̂�𝑅 is 

𝑐𝑜𝑣(�̂�𝑅) = 𝜎2(𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)(𝑋′𝑋 + 𝑘𝐼)−1 …..(7) 

v. The mean square error (MSE) of �̂�𝑅is given by 

𝑀𝑆𝐸(�̂�𝑅) = 𝑉𝑎𝑟(�̂�𝑅) + (𝑏𝑎𝑖𝑠 𝑖𝑛 �̂�𝑅)2 …….(8) 

= 𝜎2𝑇𝑟[(𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)(𝑋′𝑋 + 𝑘𝐼)−1] + 𝑘2𝛽′(𝑋′𝑋 + 𝑘𝐼)−2𝛽……(9) 

= 𝜎2 ∑
𝜆𝑖

𝜆𝑖+𝑘

𝑝
𝑖=1 + 𝑘2𝛽′(𝑋′𝑋 + 𝑘𝐼)−2𝛽 …..(10) 

In Equation (10), λ1, λ2,…, λp are the eigenvalues of X′X, the first term on the right-hand side 

is the sum of the variance of the parameters in  �̂�𝑅 and the second term is the sum of the squared 

biases. It is clear that the sum of variance decreases as k increases, while the squared bias 

increases with k. (Montgomery et al., 2012,p542) 

2.4 Principal Components Analysis  

Principal components analysis (PCA) is a fundamental method in multivariate statistics that 

finds application in various fields.  It explores and understands the interrelationship between 

many variables and transforms them into a set of new, unrelated variables (orthogonally), 

called principal components. Thus, it is possible to reduce the size of a data set that contains a 
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large number of different variables that are related to each other, and these components 

correspond numerically to the variables under study. This facilitates the analysis process 

despite the possibility of complicating the objectives of the study, as is the case when dealing 

with a large volume of information. This approach allows for the selection and analysis of a 

concise set of key components, simplifying the investigation process while preserving the 

essence of the original data. The PCA can be written as follows: (Cohen et al., 2002,p428), 

(Rashid & Tofiq, 2022,p87) 

𝑃𝑐𝑖 = 𝑎1𝑖𝑥1+𝑎2𝑖𝑥2 + ⋯ ⋯ ⋯ + 𝑎𝑚𝑛𝑥𝑚  ……….(11) 

𝑃𝑐𝑖 = ∑ 𝑎𝑗𝑖𝑥𝑗             (𝑖, 𝑗 = 1,2, … , 𝑚) 

𝑚

𝑗=1

 

  Whereas 

  PCi:  represents the PCA 

  𝑎𝑗𝑖: represents the coefficient j in the principal component i 

It can be written in matrix form as follows: Pc = AX 

[

𝑃𝐶1
𝑃𝐶2

⋮
𝑃𝐶𝑝

] = [

𝑎11 𝑎12
… 𝑎1𝑝

𝑎21 𝑎22
… 𝑎2𝑝

⋮ ⋮ ⋮ ⋮
𝑎𝑝1 𝑎𝑝2

… 𝑎𝑝𝑝

] [

𝑥1

𝑥2

⋮
𝑥𝑝

] ………..(12) 

The values of the principal component variables Pc1, Pc2, ..., Pcp correspond to the vector Pc, 

while the values of the random variables x1, x2, x3, ..., xp correspond to the vector x. The 

eigenvalues are represented by 𝜆1 > 𝜆2 > ⋯ . > 𝜆𝑝  . The constants 𝑎𝑖𝑗   correspond to the 

elements of the ith eigenvector associated with the eigenvalue𝜆𝑖. (Al-Rawi, 1987,p487) 

We calculate the correlation matrix or covariance matrix of the explanatory variables as shown 

in Equation (13). 

R= [

𝟏 𝒓𝟏𝟐
⋯ 𝒓𝟏𝒑

𝒓𝟐𝟏 𝟏 ⋯ 𝒓𝟐𝒑

⋮ ⋮ ⋱ ⋮
𝒓𝒑𝟏 𝒓𝒑𝟐 … 𝟏

]     ……..(13) 

𝑟𝑖𝑗 is simple correlation between two variables, when i,j=1,2,3,…., p 

To find the characteristic roots (𝜆𝑖), we subtract from the diagonal values of the matrix R and 

then make its term equal to zero, so we obtain the characteristic equation of the matrix. 

|𝑹 − 𝝀𝑰|= [

𝟏 − 𝝀 𝒓𝟏𝟐
⋯ 𝒓𝟏𝒑

𝒓𝟐𝟏 𝟏 − 𝝀 ⋯ 𝒓𝟐𝒑

⋮ ⋮ ⋱ ⋮
𝒓𝒑𝟏 𝒓𝒑𝟐 … 𝟏 − 𝝀

]  =0    ……..(14) 

The form of the characteristic equation is a polynomial of degree p 

𝝀𝒑 + 𝑪𝒎−𝟏𝝀𝒑−𝟏 + ⋯ … … . . +𝑪𝟏𝝀 + 𝑪𝟎 = 𝟎  ……(15) 
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When solving this equation we will get p roots and these roots (𝜆1 > 𝜆2 > ⋯ . > 𝜆𝑝) are 

arranged from largest to smallest.  

Explanation of variance and variance of the principal components is as follows: 

𝑣𝑎𝑟(𝑥𝑖) = 𝜎𝑖𝑖   𝑖 = 1,2, … , 𝑝       ……………(16) 

𝑉𝑎𝑟(𝑃𝑐𝑖) = 𝜆𝑖    𝑖 = 1,2, … , 𝑝     ……………(17) 

𝐶𝑜𝑣(𝑃𝑐𝑖 , 𝑃𝑐𝑗) = 0                       ……………(18) 

The following ratio provides the percentage of the original data's variability explained by the 

ith principal component. This can be calculated using the formula: (Johnson & Wichern, 

2014,p430) 

𝑽𝒂𝒓(𝑷𝒄𝒊)

∑ 𝑽𝒂𝒓(𝑷𝒄𝒊)
=   

𝝀𝒊 

∑ 𝝀𝒊 
      ……………(19) 

The percentage of variance that is explained by a few of the principal components by calculating 

the sum of the eigenvalues of those components and comparing this total to the sum of the 

eigenvalues 

Significant principal components are chosen by evaluating the cumulative percentage of 

variance explained for each component. The number of selected principal components 

corresponds to the count of characteristic roots ( λ > 1 ). Therefore, the first Principal 

component, derived from the first eigenvectors, explains the largest amount of variation in the 

original data, Subsequent principal components then explain the remaining variance in 

descending order. The amount of variation captured by each PC is given by their corresponding 

eigenvalues. (Samarasinghe, 2006,p287) 

The first principal component (Pc1) explains the largest proportion of the total variance of the 

explanatory variables, followed by the second principal component (Pc2), and so forth for the 

remaining components. (Blbas et al., 2017,p47) 

2.5 Artificial Neural Networks 

The fundamental concept of Artificial Neural Networks (ANN) is to simulate the structure and 

function of the biological neural networks of the human brain. ANNs are a set of models and 

algorithms that have demonstrated an increasingly noteworthy role in the practical solution of 

difficult and diverse problems. An artificial neural network (ANN) consists of interconnected 

artificial neurons that use a mathematical or computational model to process information, 

derived from the connectionist approach to computation. An artificial neural network 

essentially consists of a network of basic processing units (neurons) capable of exhibiting 

complex processes and overall behavior, dictated by the connections between these processing 

units and their respective parameters. (Fausett, 1994,p25) (Samarasinghe, 2006,p11) 

The various advantages to ANN including provide highly accurateresults when compared with 

regression model, easily updated, suitable for dynamic environment, generallyrobust to missing 

or inaccurate data (Sharma & Chopra, 2011, P34). 

 

In order to achieve the best network architecture that accurately understands input and output 

data, two basic factors are taken into consideration: 

i. Choose the most accurate training algorithm. 

ii. Determine the appropriate number of hidden neurons. 
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Accordingly, different training algorithm and hidden nodes were evaluated to determine to 

determine the best training algorithm and the optimal number of hidden nodes that would 

produce the most accurate network structure. (Ekiugbo et al., 2021,p235) 

Neural network regression uses feedforward ANNs according to the type of supervised training 

to process the regression function. Where the input data is received by the input layer, each 

neuron is connected to neurons in the subsequent layer, known as the hidden layer (Figure 1). 

(Sharma & Chopra, 2011,P35), (Haykin, 1999,p132) 

 

 

Fig. 1 Feed Forward Neural Network with one hidden layer and one output layer 

 Mathematically, this procedure can be expressed as follows: (Haykin, 1999,p132) 

Hj = vj + ∑ vij Xi   
n
i=1 …………..(20) 

Where: vj=the bais term for hidden unit j 

vij=the weight from input note i to hidden node j 

Xi=ith input variables  

At each hidden node j, an activation function is applied to estimate the output of the hidden 

layer unit: 

hj = f(Hj) …………..(21) 

The activation values from each node in the hidden layer are sent to the output layer, and then an 

output unit collects (Yk; k=1,...,m) its weighted input signals as follows: 

Yk ل = Wk + ∑ hjWjk    P
j …….(22) 

Where: wjk=the weight from hidden node j to output node k 

Finally, the output layer generates the corresponding outputs based on the provided inputs and 

then applies an activation function to estimate the outputs of the output layer unit: (Li & Wang, 

2019,p5) 

𝑦k = f(Yk)  …………..(23) 

Backpropagation ANN is a supervised learning algorithm widely used to train feedforward 

neural networks. It adjusts the network weights and biases based on the least square error 

between the predicted (NN output) (yk) and the actual (model data) output (tk) until the optimal 

weights are reached, and propagates this error across the network inversely. (Haykin, 

1999,p133) (King, 1999,p159) 

𝑀𝑖𝑛 ∑ (𝑦𝑘 − 𝑡𝑘)2𝐾
𝑘=1   …………….(24) 
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It includes forward and backward propagation stages, calculates outputs and adjusts parameters 

to reduce errors. Using gradient optimization, it updates weights and biases to reduce errors. 

The objective function of NN in Equation (24) is similar to that used in multiple linear 

regressions. Both techniques aim to minimize the sum of squared differences between observed 

and expected values. (King, 1999,p161) 

3.  Results and Discussion 

The practical aspect of this research includes estimating of the multiple linear regression model 

and then diagnosing the multicollinearity problem between the explanatory variables for the 

compressive strength of high-performance concrete (HPC) and identifying the variables 

causing this problem based on the variance inflation factor (VIF). Then (Ridge regression, PCA, 

ANN) were used to estimate parameters and factors as methods for treating multicollinearity to 

reach estimates that are more expressive of the effect of the explanatory variables on the 

compressive resistance function of concrete.  

The experimental data used in this study were obtained from the from a machine learning 

repository managed by the University of California, Irvine (UCI) and curated by (Yeh, 

1998,p1800). Concrete samples assessed by different university research facilities to evaluate 

the prediction capabilities of each AI technique. The data consists of 8 independent variables 

in addition to the dependent variable, and the number of samples used in this research 400 

samples. 

We will apply the three statistical measures; Root Mean Squared Error (RMSE), Mean absolute 

error (MAE) and coefficient of determination(R²) to determine the best model among the 

estimated models. 

3.1 Diagnosing multicollinearity in data 

The multiple linear regression model estimation and analysis results in Table(1) indicate that 

the VIF value of some variables exceeded 10, which is an indication of the presence of 

multicollinearity in the model. Multicollinearity can affect the reliability of regression 

coefficients and predictors, so it is necessary to consider addressing multicollinearity problem 

in the model, especially for variables with high VIF values. Find some statistical indicators 

(RMSE, MAE and R2) which are equal to (8.10, 6.23 and 78.8%) 

Table (1) Results of multiple linear regression 

Variables 
Unstandardized 

Coefficients VIF 

Constant -37.013  

Cement (x1) 0.120 21.159 

Blast Furnace Slag (x2) 0.136 11.983 

Fly Ash (x3) 0.064 15.057 

Water  (x4) -0.154 4.177 

Superplasticizer (x5) -0.096 2.458 

Coarse Aggregate  (x6) 0.033 11.211 

Fine Aggregate (x7) 0.020 11.270 

Age  x8 0.279 1.015 

 

4.2 Ridge regression analysis  

Ridge regression enhances the stability of parameter estimates, particularly for variables 

exhibiting high VIF values. Various methods were employed to determine the optimal value of 

the ridge parameter (k), typically set between 0 and 1. and by increasing the value of (k) by 

0.05 for each iteration with finding (VIF) and statistical indicators, we found that the optimal 
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value was found to Parameter = 0.02. The estimated coefficients for the variables in the ridge 

regression model are presented in Table 2, where VIF<5 indicate the absence of 

multicollinearity problem in the model. Find some statistical indicators (RMSE, MAE and R2) 

which are equal to (8.24, 6.27 and 69.03%) 
Table (2) Model Results for Ridge Parameter = 0.02 

Parameter 
Unstandardized 

Coefficients 

standardized 

Coefficients 

Variance 

Inflation Factor 

(Constant) 102.78   

Cement 0.043 0.427 0.590 

Blast Furnace Slag 0.061 0.369 0.649 

Fly Ash -0.037 0.017 0.724 

Water -0.199 -0.208 0.773 

Superplasticizer 0.198 -0.011 0.902 

Coarse Aggregate -0.022 -0.022 0.737 

Fine Aggregate -0.035 -0.078 0.630 

Age 0.231 0.499 0.698 

 

3.3 Principal components method 

The principal components regression method is applied using 8 input variables, and the 

variables that have different measurement units, were standardized.  Then, eigenvalues greater 

than one were determined, from which the first four components were extracted from the 

explanatory variables after rotate them. These components collectively explained up to 

83.659% of the total variance. The results are in Table (3). 

Table(3) Total variance explaine 

Component Total % of Variance Cumulative % 

1 2.514 31.42 31.420 

2 1.712 21.39 52.814 

3 1.438 17.98 70.794 

4 1.029 12.87 83.659 

Table (4) presents the rotated component matrix obtained from the principal component 

analysis. Each variable is associated with different components based on their loadings. Higher 

absolute values indicate stronger associations with the respective components.  

Component 1, which explains (31.42%) of the variance, is strongly associated with fly ash, 

coarse aggregate and cement. 

Component 2 which explains (21.39%) of the variance, is strongly with water and 

superplasticizer. 

Component 3 which explains (17.98%), is strongly associated with Fine Aggregate and Blast 

Furnace Slag. 

Component 4, which explains (12.87% ) is strongly related to Age. 

 
Table (4) Rotated Component Matrix 

 Component 

 1 2 3 4 

Fly Ash -0.86 -0.09 0.28 -0.08 

Coarse Aggregate -0.83 -0.12 -0.38 -0.06 

Cement 0.82 0.23 -0.14 -0.09 

Water 0.08 -0.94 -0.09 -0.01 

Superplasticizer 0.39 0.82 0.03 0.03 

Fine Aggregate 0.09 0.19 0.92 0.08 

Blast Furnace Slag 0.49 0.18 -0.60 0.19 

Age -0.02 0.01 0.011 0.98 
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The multiple regression method was used to estimate the concrete compressive strength 

equation through regression on the extracted factors (PC1, PC2, PC3, and PC4). To obtain the 

best input factor for the model (PCA-MLR), the stepwise algorithm is used, and the VIF values 

for all input variables indicate that there is no multicollinearity problem and significant values 

for all predictors (P < 0.05). The adjusted R square indicates that approximately 74.8% of the 

variance in concrete compressive strength is explained by the four factors. The result is in Table 

5 and 6  

We write the multiple regression equation as follows 

Concrete compressive strength (Y) =42.612+10.743PC1+5.023PC2-3.877PC3+9.064PC4 

Table(5) VIF values and cofficients for the principal 

component regression method 

Model B t Sig. VIF 

(Constant) 42.612 95.395 <0.001  

PC1 10.743 24.02 <0.001 1 

PC2 5.023 11.231 <0.001 1 

PC3 -3.877 -8.668 <0.001 1 

PC4 9.064 20.267 <0.001 1 

 
Table (6) Result of the stepwise algorithm for the (PCA-MLR) model. 

Input Adj. R2 Sig VIF 

PC1 31.9% 0.00 No problem 

PC1,PC4 58.7% 0.00 No problem 

PC1,PC4,PC3 68.9% 0.00 No problem 

PC1,PC4,PC3, PC2 74.8% 0.00 No problem 

 

3.4 Artificial Neural Networks ANN 

Application of the Feedforward Neural Network (FFNN) model to analyze the compressive 

strength of concrete with changing hidden layer (one and two layers):- 

3.4.1 Feedforward Neural Networks one hidden layer  

The model consists an input layer containing eight variables as inputs, one hidden layer, with 

the final layer being the output layer responsible for predicting the concrete's compressive 

strength. The input data will be randomly partitioned into three sets and 70% of the data will 

be assigned to the training set, while 15% will be allocated to both the validation and testing 

sets.  

In order to determine the best FFNN model, we varied the number of nodes in the hidden layer 

from 1 to 10 and repeated each experiment (500) times for each node and then calculated the 

average of the statistical indicators (RMSE, MAE and R2). The results in table (7) indicate that 

the FFNN model with the (8:10:1) architecture performs optimally and has minimum values 

(RMSE and MAE), as well as a high R2 value.  

Table (7) Comparison of FFNN models for compressive strength of concrete 

No. of  Nodes in 

hidden layer 
1 2 3 4 5 6 7 8 9 10 

RMSE 8.04 7.08 6.50 6.07 5.80 5.63 5.58 5.34 5.19 5.17 

MAE 6.20 5.43 4.91 4.56 4.33 4.16 4.10 3.92 3.78 3.75 

R2 79.6 84.2 86.7 88.5 89.5 90.1 90.3 91.1 91.61 91.67 
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3.4.2 Feedforward Neural Networks two hidden layer 

Similarly, to our previous approach, to determine the number of nodes in two hidden layers 

from 1 to 10 and repeated each experiment (500) times for each node, followed by calculating 

the average statistical indicators. From the results, the FFNN model (8:10:6:1) is the best model 

with the lowest value (RME = 5.543 and MAE = 3.941) and the highest R2 value is 90.45%. 

The analysis detects that adding two hidden layers fails to improve the values of the statistical 

indicators. Therefore, we will choose the first model. We'll now proceed to estimate the 

importance of each input variable within this model FFNN(8:10:1), as illustrated in Figure 2 

and Table (8) which represents all the basic variables. The x-axis shows the normalized 

importance or percentage impact on concrete strength. According to the analysis “Cement” has 

been identified as the most important variable followed by Age, Water and other variables with 

less effect. 
 

Table 8 The Importance of predictors as illustrated by FFNN1 

Variables Importance Normalized Importance 

Cement 0.248  (0.248/0.248) = 100% 

Blast Furnace Slag 0.114 (0.114/0.248) = 46.0% 

Fly Ash 0.035 (0.035/0.248) = 14.1% 

Water 0.126 (0.126/0.248) = 50.7% 

Superplasticizer 0.093 (0.093/0.248) = 37.5% 

Coarse Aggregate 0.068 (0.068/0.248)= 27.3% 

Fine Aggregate 0.085 (0.085/0.248) = 34.4% 

Age 0.232 (0.232/0.248)= 93.9% 

 
 

3.5 Compare model results 

1. Comparing the standardized coefficients from Ridge regression (Table 2), the parameter 

values across four factors in PCA (Table 4),  and the importance of the predictors in FFNN1 

(Table 5) . From the results, it can be concluded that the basic variables have a greater 

effect on the strength of concrete: cement, age, water, blast furnace slag and other variables 

have less effect. 
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2. Table (9) indicates that the Feedforward Neural Network with one hidden layer have better 

performance than other methods, as it achieving the lowest RMSE and MAE values, in 

addition to the highest R2 value. 

Table 9 Comparison of Models Performances 

Methods RMSE MAE 2R 

MLR 8.10 6.23 78.8% 

Ridge MR 8.24 6.27 69.03% 

MLR-PCA 8.88 6.93 74.80% 

FFNN(one Hidden) 5.17 3.75 91.67% 

FFNN(two Hidden) 5.543 3.941 90.45% 

 

4.  Conclusion  

1. Results of applying and studying different methods (ridge regression, principal component 

analysis, and feedforward neural network) to estimate compressive strength concrete models 

more effectively than traditional multiple linear regression, especially in addressing 

multicollinearity, were compared. The comparison of results revealed that the FFNN(8:10:1) 

model outperformed other methods, as it achieved the lowest RMSE and MAE values, as 

well as the highest R2 value. 

2. From the results different methods, it can be concluded that the basic variables have a greater 

effect on the strength of concrete: cement, age, water, blast furnace slag and other variables 

have a lesser effect 

3. Determining the optimal number of layers and nodes in the hidden layer is the basic and 

difficult aspect of neural networks, so each experiment was repeated (500) times for each 

node, and then the average statistical indicators were calculated. Increasing the second 

hidden layer of the model (FFNN) did not improve the model, and therefore it is the best 

model in neural networks (FFNN (8:10:1)).  
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 پوختە 

 کاریگەری  لە  تێگەیشتتن کە بەرزەوه ،  پەیوەندییە  بە کە  فرەیی ڕوودەدات هێڵی  لاريبوون  شتتیکاری  لە ستتەربەکۆکان  گۆڕاوە نێوان  هێڵەكى  فرە پەيوەيستتت 

  دەستتتتنیشتتتانکردنی  توێژینەوەکە  ئامانجی. هەیە  پەیوەندییەکان  لێکدانەوەی و  ستتتەگامگیری مۆدێل،  وردی  لەستتتەر  کاریگەری دەکات،  ئاڵۆز تاکەکان  گۆڕاوە

 کێشتەیەن ئەم هۆکاری کە  گۆڕاوانەی ئەو  دەستتنیشتانکردنی فرەیی و هێڵی  لاريبوون  مۆدێلی  لە ستەربەکۆکان  گۆڕاوە  نێوان هێڵەكى  فرە پەيوەيستت  کێشتەی

 شتیکاری  ستەرەکی  ڕیج،  لاريبوون  لە بریتین کە  بەدیل،  شتێوازی  ست   هەڵستەنگاندنی  و  کەمڵاندن  پاشتان  ،(VIF) جیاوازی  هەڵاوستانی  فاکتەری بنەمای  لەستەر

 کۆنکرێتی  بۆ پەستتتان هێزی  داتاکانی بۆ مۆدێلەکان بەکارهێنانی و  شتتاراوەکان  چینە دوو و  یەک بە(  FFNN)  دەستتتکرد  دەماری تۆڕی  مۆدێلی و پێکهاتەکان،

 FFNN  مۆدێلی  بەڵام  کرد،  چارەسەر  هێڵەكى  فرە پەيوەيست   کێشەی  کاریگەر  شێوەیەکی  بە  PCA  و  ڕیج  پاشەکشەی  کە  دەریانخست  ئەنجامەکان.  بەرز  کارایی

 .دەکرێت بەراورد 2R و RMSE، MAE بەهاکانی ککاتێ بەرز کارایی کۆنکرێتی پەستانی هێزی کەمڵاندنی لە دا نیشان بەرزتری پێشبینیکردنی وردبینی
 

 سەرەکییەکان پێکهاتە شیکاری ڕیجی، پاشەکشەی دەستکرد، دەماری تۆڕی فرەیی ، هێڵی لاريبوون  ، هێڵەكى فرە پەيوەيست  : سەرەكییەكان ووشە
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 ملخص 

 المتغير  تأثير تمييز يع د  مما عالية،  بارتباطات يتميز الذي المتعدد  الخطي  الانحدار  تحليل  في  المستتتت لتة  المتغيرات بين  المتعتددة الخطيتة العلاگة  تحتد 

  نموذج  في  التفستيرية  المتغيرات  بين  الخطي التعدد  مشتللة  تشتخي   إلى  البحث يهدف.  العلاگات  وتفستير والاستت رار  النموذج  دگة  على  يؤثر مما  الفردي،

  انحدار وهي  بديلة  طرق  ثلا  أداء  وت ييم   ت دير ثم   ،(VIF) التباين  تضتخم  عامل  على  بالاعتماد  المشتللة  لهذه  المستببة  المتغيرات  وتحديد  الخطي  الانحدار

 گوة  بيانات  على  النماذج وتطبيق  والطب تين،  الواحدة المخفية الطب ة  ذات (FFNN) المغذية العصتبية  الشتبلات  ونماذج  الرئيستية،  الملونات  تحليل  ريدج،

 المخفية  الطب ة  نموذج  للن المتعددة، الخطية  مشتتتللة  فعال  بشتتتلل  عالجا گد PCA و  ريدج  انحدار أن  النتائج  أظهرت.  الأداء   عالية  للخرستتتانة  الضتتتغ 

 .2Rو   RMSE ،MAEكل من  گيم  م ارنة عند الأداء  عالية للخرسانة الضغ  گوة ت دير في فائ ة تنبؤية دگة أظهر  FFNNالفردية

 الرئيسية الملونات تحليل ريدج، انحدار الاصطناعية، العصبية الشبلة المتعددة، الخطية الانحدارات الخطي، التعدد: المفتاحية الكلمات

 


