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Abstract
Multicollinearity between independent variables occurs in

multiple linear regression analysis characterized by high
correlations, which complicates discerning individual
variable effect, impacting model accuracy, stability, and
interpretation of relationships. The research aims to
diagnose the multicollinearity problem  between
CORRESPONDENCE explanatory variables in the linear regression model and
S:nr%iﬁm'lﬁfnsgg”d'g@”:‘&g%?ﬂ | |der1t|fy|ng the Yarlables causing this problem.base?d on the

variance inflation factor (VIF), then estimation and
evaluate the performance of three alternative methods,
which are Ridge regression, principal components
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Accepted 11/07/2024 models with one and two hidden layers and application of
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the models to compressive strength data for high-
performance concrete. The results showed that Ridge
regression and PCA effectively addressed multicollinearity

,}fﬂi)ﬂ’ivc%r,ﬂiéarity, problem, but the single hidden layer model FFNN showed
Multiple linear regressions, superior predictive accuracy in estimating the compressive
gitéggi?ég”ree‘;;?é:etwork' strength of high-performance concrete when comparing
Principal compoﬁents analysis RMSE, MAE, and R? values.
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1. Introduction

Multiple regression analysis is statistical methods used to study the linear association between
a dependent variable and several independent variables. Its purpose is to identify and measure
the direction and strength of the relationship between the variables under study. The effective
use of the equation and estimated coefficients requires the availability of some assumptions,
and the accuracy of these estimators depends on the validity of these assumptions. One of the
assumptions is that there is no exact collinearity among the independent variables, also known
as multicollinearity.

Multicollinearity occurs between independent variables when there is a high correlation
between the independent variables in the multiple regression models, which leads to difficulty
distinguishing the effect of each variable on the model, affects the accuracy and stability of the
model. In addition, multicollinearity leads to inflation of variance and difficulty interpreting the
actual relationships between the variables.

Ridge regression and principal component regression are two commonly used biased regression
methods. The biased regression methods attack the collinearity problem by computationally
suppressing the effects of the collinearity. Ridge regression does this by reducing the apparent
magnitude of the correlations. Principal component regression attacks the problem by
regressing Y on the important principal components and then parceling out the effect of the
principal component variables to the original variables (Rawlings et al., 1998, p67). Artificial
Neural Networks (ANN) has been widely used in prediction, modeling, and classification
problems. It has the ability to fit any complex function through training. As a result, the effect
of multicollinearity is no longer a problem because the flat area due to multicollinearity in the
multiple regression line cannot be seen in Neural Network (Li & Wang, 2019,p6) (Chan et al.,
2022,p8). However, each method has its own set of strengths and limitations, and the decision
which to use depends on the specific analysis objectives and criteria.

2. Method and materials
2.1Multiple Linear Regression

Multiple linear regression analysis is performed by constructing a prediction model consisting
of a dependent variable or a response variable y based on an assumed linear relationship with
several k independent predictors (X1, X2,.., X). (Rencher & Schaalje, 2008,p2). The model for
multiple linear regressions with linear terms is

y=Po+Pixt+PaxXe+ -+ PXkTE ..o..an..n (1)

A random error € accounts for any factors not included in the model. The regression coefficients
Bo, P, B2, . . . , Pk represent the parameters, where fo is the intercept and coefficient g; (j=1,2,..k)
signifies the change in the expected value of y for a unit change in x; while keeping all other
variables constant . The errors are assumed to be unobservable, independent random
disturbances following a normal distribution with zero mean and constant variance, denoted as
g ~ N(0, 6%). Under these conditions, the ordinary least squares (OLS) estimation method
provides unbiased, consistent, and efficient estimates of the unknown parameters. (Doane &
Seward, 2021,p475)

Multiple linear regression analysis involves several basic assumptions: (1) linearity, (2)
homoscedasticity (Var(g;)=o? for all i) (3) independence of errors ((Cov(g;g;)=0 for all i#)) (4)
normally residuals(si ~ N(0, ¢?) and (5) No multicollinearity ((Corr(x;,x;)=0 for all i#j).
(Rawlings et al., 1998,p29)
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2.2 Detecting the problem of multicollinearity:

Multiple linear regression models that include two or more explanatory variables may
encounter multicollinearity problems. Detecting the problem of multicollinearity means
revealing the degree of multicollinearity, and its purpose is not the presence or absence of
multicollinearity. The following points must be taken into consideration.

Detecting multicollinearity depends on some basic rules, some informal and some formal, but
the basic rules of thumb are all the same. Now we will look at some of these rules. We now
consider some of these rules. (Gujarati & Porter, 2009,p320)

1. High R? value and non-significant estimated parameters of explanatory variables

2.The high correlation coefficients between explanatory variables and the fact that the
correlation coefficients between pairs of variables in diagnosing the problem of
multicollinearity because the mutual relationship between three or more variables may lead
to a high degree of multicollinearity, even though the correlations between pairs of variables
are low. Therefore, the best procedure to measure the degree of multicollinearity is to
calculate the Eigenvalues of the correlation matrix and its corresponding condition index, in
addition to variance inflation factors (VIF) and variance decomposition rates.

3.Tolerance and variance inflation factor: The variance inflation factor is the dominant
approach to detect the presence of the multicollinearity problem. It measures the extent to
which the variances of estimated regression coefficients are inflated when there is a linear
relationship between explanatory variables. Can be found by relying on the coefficient of
determination as in the following formula:-

1

VIF; = 1-R}

RJ-2 - It represents the coefficient of determination of the explanatory variable X;j in multiple

linear regression.
P: Number of explanatory variables.
Tolerance is calculated as the reciprocal of VIF

1 .
TOL] = m ] = 1,2,3, v, Pl (3)

J

A low tolerance or high VIF indicates a high degree of multicollinearity between predictor
variables. When the VIF value equals 1, it indicates no correlation among independent
variables. A VIF value greater than one indicates a departure from orthogonally and typically
suggests correlations among variables. If VIF falls between 1 and 5, it indicates moderate
correlation among variables. The challenging value of VIF is between 5 to 10 as it specifies the
highly correlated variables. If the VIF exceeds 5 to 10, multicollinearity among predictors in
the regression model is present, and a VIF greater than 10 indicates weak estimation of
regression coefficients due to multicollinearity. (Shrestha, 2020,p41)

2.3 Ridge regression analysis

When employing the least squares method with non-orthogonal data, it may lead to highly
inaccurate estimates of regression coefficient as inflated variances and causing instability. This
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inflation is represented by the diagonal elements of the standard matrix. (Pati, 2020,p11),
(Montgomery et al., 2012,p542).

Several procedures have been developed for obtaining biased estimators of regression
coefficients. Among them is ridge regression, first proposed by Hoerl and Kennard [1970a, b],
consists of adding a constant quantity to the diagonal elements of the matrix before taking its
inverse, This leads to a biased estimator Br of B, known as the ridge estimator, according to the
following formula: (Kutner et al., 2005), (Montgomery et al., 2012,p543,p184)
fr=X'X+EkDIX'Y ...... (4)
k takes the value of (O<k<1), if k =0, the ridge estimator is the least-squares estimator.
Where (XX is a diagonal matrix representing the eigenvalues values of the matrix

The basic properties of the ridge solution include: (Duzan, 2020,p184)

I.  The sum of squared residuals is a monotone which increases as a function of k
ii.  The ridge estimator is a linear transformation of the OLS method since

Br=X'X+kDIX'Y)=X'X+kDYX'X)B ..oonn.. (5)
iii. E(B) is abiased estimator of .
EWBr)=X'X+kD Y X'X)B#L coeevevnn. (6)
iv.  The constant k is denoted as the biasing parameter. The covariance of S is
cov(Br) = a2(X'X + kD' X' X)X'X + kD™ ....(7)
v.  The mean square error (MSE) of Bxis given by
MSE(Bg) = Var(Bg) + (bais in fg)? ....... (8)

=?Tr[(X'X + kD' X' X)X'X + kDY + k28" (X'X + kD)72B...... 9)

2vP A
=g2)_ —=
Zl_l Ai+k

+ k2B'(X'X + kD)2 ....(10)

In Equation (10), A1, A2,..., Ap are the eigenvalues of X'X, the first term on the right-hand side

is the sum of the variance of the parameters in BR and the second term is the sum of the squared
biases. It is clear that the sum of variance decreases as k increases, while the squared bias
increases with k. (Montgomery et al., 2012,p542)

2.4 Principal Components Analysis
Principal components analysis (PCA) is a fundamental method in multivariate statistics that
finds application in various fields. It explores and understands the interrelationship between

many variables and transforms them into a set of new, unrelated variables (orthogonally),
called principal components. Thus, it is possible to reduce the size of a data set that contains a
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large number of different variables that are related to each other, and these components
correspond numerically to the variables under study. This facilitates the analysis process
despite the possibility of complicating the objectives of the study, as is the case when dealing
with a large volume of information. This approach allows for the selection and analysis of a
concise set of key components, simplifying the investigation process while preserving the
essence of the original data. The PCA can be written as follows: (Cohen et al., 2002,p428),
(Rashid & Tofiqg, 2022,p87)

Pc; = aqixq+azixy + «oeveeee + Apn X eeeeennn (11)

m
= Zajixj (l,] = 1,2,...,m)
j=1

Whereas
PCi: represents the PCA
a;;: represents the coefficient j in the principal component i

It can be written in matrix form as follows: Pc = AX

PC1 a;; alp X1
Aoy | |x

PCZ azz U Zp 32 ........... (12)
'rr app xp

The values of the principal component variables Pc1, Pc2, ..., Pcp correspond to the vector Pc,
while the values of the random variables x1, x2, X3, ..., Xp correspond to the vector x. The
eigenvalues are represented by 4; > 4, > ---.> 1, . The constants a;; correspond to the

elements of the i eigenvector associated with the eigenvalueA;. (Al-Rawi, 1987,p487)

We calculate the correlation matrix or covariance matrix of the explanatory variables as shown
in Equation (13).

1 T12 rlp
rR=|T 1 Tl L (13)
Ty Tp2 1
r3; 18 simple correlation between two variables, when 1,j=1,2,3,...., p

To find the characteristic roots (4;), we subtract from the diagonal values of the matrix R and
then make its term equal to zero, so we obtain the characteristic equation of the matrix.

1-2 T2 rlp
. cee r
R—an=|"2 174 7 Tl gL (14)
rpl rpz . 1—24

The form of the characteristic equation is a polynomial of degree p

AP 4+ Copp g AP e L 4C1A+Cy=0 ...... as)
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When solving this equation we will get p roots and these roots (1; > 1, > ---.> 1,) are
arranged from largest to smallest.

Explanation of variance and variance of the principal components is as follows:

var(x;) =o0; i =12,..,p .o (16)
Var(Pc;)) =A4; i=12,...,0 .ecevinin.. (17)
Cov(Pci,ch) =0 (18)

The following ratio provides the percentage of the original data's variability explained by the
ith principal component. This can be calculated using the formula: (Johnson & Wichern,
2014,p430)

Var(Pc;) A

ZVT(PCi) —_ le ............... (19)

The percentage of variance that is explained by a few of the principal components by calculating
the sum of the eigenvalues of those components and comparing this total to the sum of the
eigenvalues

Significant principal components are chosen by evaluating the cumulative percentage of
variance explained for each component. The number of selected principal components
corresponds to the count of characteristic roots (A > 1). Therefore, the first Principal
component, derived from the first eigenvectors, explains the largest amount of variation in the
original data, Subsequent principal components then explain the remaining variance in
descending order. The amount of variation captured by each PC is given by their corresponding
eigenvalues. (Samarasinghe, 2006,p287)

The first principal component (Pcl) explains the largest proportion of the total variance of the
explanatory variables, followed by the second principal component (Pc2), and so forth for the
remaining components. (Blbas et al., 2017,p47)

2.5 Artificial Neural Networks

The fundamental concept of Artificial Neural Networks (ANN) is to simulate the structure and
function of the biological neural networks of the human brain. ANNs are a set of models and
algorithms that have demonstrated an increasingly noteworthy role in the practical solution of
difficult and diverse problems. An artificial neural network (ANN) consists of interconnected
artificial neurons that use a mathematical or computational model to process information,
derived from the connectionist approach to computation. An artificial neural network
essentially consists of a network of basic processing units (neurons) capable of exhibiting
complex processes and overall behavior, dictated by the connections between these processing
units and their respective parameters. (Fausett, 1994,p25) (Samarasinghe, 2006,p11)

The various advantages to ANN including provide highly accurateresults when compared with
regression model, easily updated, suitable for dynamic environment, generallyrobust to missing
or inaccurate data (Sharma & Chopra, 2011, P34).

In order to achieve the best network architecture that accurately understands input and output
data, two basic factors are taken into consideration:
i.Choose the most accurate training algorithm.

ii.Determine the appropriate number of hidden neurons.
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Accordingly, different training algorithm and hidden nodes were evaluated to determine to
determine the best training algorithm and the optimal number of hidden nodes that would
produce the most accurate network structure. (Ekiugbo et al., 2021,p235)

Neural network regression uses feedforward ANNSs according to the type of supervised training
to process the regression function. Where the input data is received by the input layer, each
neuron is connected to neurons in the subsequent layer, known as the hidden layer (Figure 1).
(Sharma & Chopra, 2011,P35), (Haykin, 1999,p132)

Input layer Hidden layer Output layer

Input variable | @
-

Input variable 2 @
_

Input variable u @
—_—

©0 00

Fig. 1 Feed Forward Neural Network with one hidden layer and one output layer
Mathematically, this procedure can be expressed as follows: (Haykin, 1999,p132)
H] = V]' + Z?zl Vi]' Xi .............. (20)

Where: v;=the bais term for hidden unit j

vij=the weight from input note i to hidden node j

Xi=i" input variables

At each hidden node j, an activation function is applied to estimate the output of the hidden
layer unit:

The activation values from each node in the hidden layer are sent to the output layer, and then an
output unit collects (Yi; k=1,...,m) its weighted input signals as follows:

Yk = Wk + Z]P h]VV]k ....... (22)

Where: wik=the weight from hidden node j to output node k
Finally, the output layer generates the corresponding outputs based on the provided inputs and
then applies an activation function to estimate the outputs of the output layer unit: (Li & Wang,
2019,p5)

Yk = f(Yk) .............. (23)
Backpropagation ANN is a supervised learning algorithm widely used to train feedforward
neural networks. It adjusts the network weights and biases based on the least square error
between the predicted (NN output) (yk) and the actual (model data) output (tk) until the optimal
weights are reached, and propagates this error across the network inversely. (Haykin,
1999,p133) (King, 1999,p159)

Min Zgzl(yk - tk)z ................ (24)
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It includes forward and backward propagation stages, calculates outputs and adjusts parameters
to reduce errors. Using gradient optimization, it updates weights and biases to reduce errors.
The objective function of NN in Equation (24) is similar to that used in multiple linear
regressions. Both techniques aim to minimize the sum of squared differences between observed
and expected values. (King, 1999,p161)

3. Results and Discussion

The practical aspect of this research includes estimating of the multiple linear regression model
and then diagnosing the multicollinearity problem between the explanatory variables for the
compressive strength of high-performance concrete (HPC) and identifying the variables
causing this problem based on the variance inflation factor (VIF). Then (Ridge regression, PCA,
ANN) were used to estimate parameters and factors as methods for treating multicollinearity to
reach estimates that are more expressive of the effect of the explanatory variables on the
compressive resistance function of concrete.

The experimental data used in this study were obtained from the from a machine learning
repository managed by the University of California, Irvine (UCI) and curated by (Yeh,
1998,p1800). Concrete samples assessed by different university research facilities to evaluate
the prediction capabilities of each Al technique. The data consists of 8 independent variables
in addition to the dependent variable, and the number of samples used in this research 400
samples.

We will apply the three statistical measures; Root Mean Squared Error (RMSE), Mean absolute
error (MAE) and coefficient of determination(R?) to determine the best model among the
estimated models.

3.1 Diagnosing multicollinearity in data

The multiple linear regression model estimation and analysis results in Table(1) indicate that
the VIF value of some variables exceeded 10, which is an indication of the presence of
multicollinearity in the model. Multicollinearity can affect the reliability of regression
coefficients and predictors, so it is necessary to consider addressing multicollinearity problem
in the model, especially for variables with high VIF values. Find some statistical indicators
(RMSE, MAE and R?) which are equal to (8.10, 6.23 and 78.8%)

Table (1) Results of multiple linear regression

: Unstandardized
variables Coefficients VIF
Constant -37.013

Cement (x1) 0.120 21.159
Blast Furnace Slag (x2) 0.136 11.983
Fly Ash (x3) 0.064 15.057
Water (x4) -0.154 4.177
Superplasticizer (x5) -0.096 2.458
Coarse Aggregate (x6) 0.033 11.211
Fine Aggregate (x7) 0.020 11.270
Age x8 0.279 1.015

4.2 Ridge regression analysis

Ridge regression enhances the stability of parameter estimates, particularly for variables
exhibiting high VIF values. Various methods were employed to determine the optimal value of
the ridge parameter (k), typically set between 0 and 1. and by increasing the value of (k) by
0.05 for each iteration with finding (VIF) and statistical indicators, we found that the optimal
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value was found to Parameter = 0.02. The estimated coefficients for the variables in the ridge
regression model are presented in Table 2, where VIF<5 indicate the absence of
multicollinearity problem in the model. Find some statistical indicators (RMSE, MAE and R?)
which are equal to (8.24, 6.27 and 69.03%)

Table (2) Model Results for Ridge Parameter = 0.02
Parameter UnstanQa_rdized standa_rqized Vqriance
Coefficients Coefficients | Inflation Factor
(Constant) 102.78
Cement 0.043 0.427 0.590
Blast Furnace Slag 0.061 0.369 0.649
Fly Ash -0.037 0.017 0.724
Water -0.199 -0.208 0.773
Superplasticizer 0.198 -0.011 0.902
Coarse Aggregate -0.022 -0.022 0.737
Fine Aggregate -0.035 -0.078 0.630
Age 0.231 0.499 0.698

3.3 Principal components method

The principal components regression method is applied using 8 input variables, and the
variables that have different measurement units, were standardized. Then, eigenvalues greater
than one were determined, from which the first four components were extracted from the
explanatory variables after rotate them. These components collectively explained up to
83.659% of the total variance. The results are in Table (3).

Table(3) Total variance explaine

Component Total % of VVariance Cumulative %
1 2.514 31.42 31.420
2 1.712 21.39 52.814
3 1.438 17.98 70.794
4 1.029 12.87 83.659

Table (4) presents the rotated component matrix obtained from the principal component
analysis. Each variable is associated with different components based on their loadings. Higher
absolute values indicate stronger associations with the respective components.

Component 1, which explains (31.42%) of the variance, is strongly associated with fly ash,
coarse aggregate and cement.

Component 2 which explains (21.39%) of the variance, is strongly with water and
superplasticizer.

Component 3 which explains (17.98%), is strongly associated with Fine Aggregate and Blast
Furnace Slag.

Component 4, which explains (12.87% ) is strongly related to Age.

Table (4) Rotated Component Matrix

Component

1 2 3 4
Fly Ash -0.86 -0.09 0.28 -0.08
Coarse Aggregate -0.83 -0.12 -0.38 -0.06
Cement 0.82 0.23 -0.14 -0.09
Water 0.08 -0.94 -0.09 -0.01
Superplasticizer 0.39 0.82 0.03 0.03
Fine Aggregate 0.09 0.19 0.92 0.08
Blast Furnace Slag 0.49 0.18 -0.60 0.19
Age -0.02 0.01 0.011 0.98
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The multiple regression method was used to estimate the concrete compressive strength
equation through regression on the extracted factors (PC1, PC2, PC3, and PC4). To obtain the
best input factor for the model (PCA-MLR), the stepwise algorithm is used, and the VIF values
for all input variables indicate that there is no multicollinearity problem and significant values
for all predictors (P < 0.05). The adjusted R square indicates that approximately 74.8% of the
variance in concrete compressive strength is explained by the four factors. The result is in Table
5and 6

We write the multiple regression equation as follows

Concrete compressive strength (Y) =42.612+10.743PC1+5.023PC2-3.877PC3+9.064PC4

Table(5) VIF values and cofficients for the principal
component regression method

Model B t Sig. VIF

(Constant) 42.612 95.395 | <0.001

PC1 10.743 24.02 <0.001 1

PC2 5.023 11.231 | <0.001 1

PC3 -3.877 -8.668 <0.001 1

PC4 9.064 20.267 | <0.001 1

Table (6) Result of the stepwise algorithm for the (PCA-MLR) model.
Input Adj. R? Sig VIF

PC1 31.9% 0.00 No problem
PC1,PC4 58.7% 0.00 No problem
PC1,PC4,PC3 68.9% 0.00 No problem
PC1,PC4,PC3, PC2 74.8% 0.00 No problem

3.4 Artificial Neural Networks ANN

Application of the Feedforward Neural Network (FFNN) model to analyze the compressive
strength of concrete with changing hidden layer (one and two layers):-

3.4.1 Feedforward Neural Networks one hidden layer

The model consists an input layer containing eight variables as inputs, one hidden layer, with
the final layer being the output layer responsible for predicting the concrete's compressive
strength. The input data will be randomly partitioned into three sets and 70% of the data will
be assigned to the training set, while 15% will be allocated to both the validation and testing
sets.

In order to determine the best FFNN model, we varied the number of nodes in the hidden layer
from 1 to 10 and repeated each experiment (500) times for each node and then calculated the
average of the statistical indicators (RMSE, MAE and R?). The results in table (7) indicate that
the FFNN model with the (8:10:1) architecture performs optimally and has minimum values
(RMSE and MAE), as well as a high R? value.

Table (7) Comparison of FFNN models for compressive strength of concrete
No.of Nodesin\ 4 | » | 3 | 4 | 5 | 6| 7 | 8| 9o | 10
hidden layer
RMSE 8.04 | 7.08 | 650 | 6.07 | 5.80 | 5.63 | 558 | 5.34 | 5.19 | 5.17
MAE 6.20 | 543 | 491 | 456 | 433 | 416 | 4.10 | 3.92 | 3.78 | 3.75
R? 79.6 | 84.2 | 86.7 | 885 | 89.5 | 90.1 | 90.3 | 91.1 | 91.61 | 91.67
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3.4.2 Feedforward Neural Networks two hidden layer

Similarly, to our previous approach, to determine the number of nodes in two hidden layers
from 1 to 10 and repeated each experiment (500) times for each node, followed by calculating
the average statistical indicators. From the results, the FFNN model (8:10:6:1) is the best model
with the lowest value (RME = 5.543 and MAE = 3.941) and the highest R? value is 90.45%.

The analysis detects that adding two hidden layers fails to improve the values of the statistical
indicators. Therefore, we will choose the first model. We'll now proceed to estimate the
importance of each input variable within this model FFNN(8:10:1), as illustrated in Figure 2
and Table (8) which represents all the basic variables. The x-axis shows the normalized
importance or percentage impact on concrete strength. According to the analysis “Cement” has
been identified as the most important variable followed by Age, Water and other variables with
less effect.

Table 8 The Importance of predictors as illustrated by FFNN1

Variables Importance Normalized Importance
Cement 0.248 (0.248/0.248) = 100%
Blast Furnace Slag 0.114 (0.114/0.248) = 46.0%
Fly Ash 0.035 (0.035/0.248) = 14.1%
Water 0.126 (0.126/0.248) = 50.7%
Superplasticizer 0.093 (0.093/0.248) = 37.5%
Coarse Aggregate 0.068 (0.068/0.248)= 27.3%
Fine Aggregate 0.085 (0.085/0.248) = 34.4%
Age 0.232 (0.232/0.248)= 93.9%

0% 20% 40% 60% 80% 100%

Cement

Age

Water

Blast Furnace
Superplasticizer
Fine Aggregate
Coarse Aggregate

Fly Ash

0.00 0.0s 010 015 0.20 025

Fig.2.The importance of independent variables

3.5 Compare model results

1. Comparing the standardized coefficients from Ridge regression (Table 2), the parameter
values across four factors in PCA (Table 4), and the importance of the predictors in FFNN1
(Table 5) . From the results, it can be concluded that the basic variables have a greater
effect on the strength of concrete: cement, age, water, blast furnace slag and other variables

have less effect.
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2. Table (9) indicates that the Feedforward Neural Network with one hidden layer have better
performance than other methods, as it achieving the lowest RMSE and MAE values, in
addition to the highest R? value.

Table 9 Comparison of Models Performances

Methods RMSE MAE R?
MLR 8.10 6.23 78.8%
Ridge MR 8.24 6.27 69.03%
MLR-PCA 8.88 6.93 74.80%
FENN(one Hidden) 5.17 3.75 91.67%
FENN(two Hidden) 5.543 3.941 90.45%

4. Conclusion

1. Results of applying and studying different methods (ridge regression, principal component
analysis, and feedforward neural network) to estimate compressive strength concrete models
more effectively than traditional multiple linear regression, especially in addressing
multicollinearity, were compared. The comparison of results revealed that the FFNN(8:10:1)
model outperformed other methods, as it achieved the lowest RMSE and MAE values, as
well as the highest R? value.

2. From the results different methods, it can be concluded that the basic variables have a greater
effect on the strength of concrete: cement, age, water, blast furnace slag and other variables
have a lesser effect

3. Determining the optimal number of layers and nodes in the hidden layer is the basic and
difficult aspect of neural networks, so each experiment was repeated (500) times for each
node, and then the average statistical indicators were calculated. Increasing the second
hidden layer of the model (FFNN) did not improve the model, and therefore it is the best
model in neural networks (FFNN (8:10:1)).
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