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Abstract 

This paper proposes a new multivariate   
chart corresponding to a T2- chart robust to 
outliers using three methods, namely the 
Rousseuw and Leroy algorithm, Maronna 
and Zamar, and the family of 
"concentration algorithms" by Olive and 
Hawkins. Then the comparison between 
the proposed and classical method of the 
researcher Shewhart depending on the total 
variance (trace variance matrix) and the 
general variance (determinant of the 
variance matrix) to obtain the most 
efficient paintings against outliers through 
simulation and real data and using a 
program in MATLAB language designed 
for this purpose. The study concluded that 
the proposed charts dealt with the problem 
of the influence of outliers and were more 
efficient than the classical method. 
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1. Introduction   

Quality Control Charts have historically been used to monitor product quality in a production 

or manufacturing environment. Their general purpose is to provide information that can be 

used to uncover discrepancies or systematic patterns by comparing expected variance and 

observed variance. In a production environment, it is important to improve product quality 

and productivity to maximize a company’s profits (Deming, 1982) 

    Many different variations of control charts can be used to detect when processes go out of 

control. The most common and easily interpretable of these is the Shewart control chart (Ali 

et al 2017). These charts, named after Walter Shewart, were created from the assumption that 

every process that has variation can be understood and statistically monitored. A Shewart 

chart includes three horizontal lines, a center line, an upper limit, and a lower limit, and is the 

basis for all control charts (Ali and Esraa, 2016). The center line serves as a baseline and is 

typically the expected value or the mean value, while the upper and lower limits are depicted 

by baselines and are evenly spaced below and above the baseline. (Montgomery, 2009) 

    On another side, it is a fact of life that most data are naturally multivariate (or Bivariate). 

Hotelling in 1947 introduced a statistic that uniquely lends itself to plotting multivariate 

observations. This statistic, appropriately named Hotelling's T2, is a scalar that combines 

information from the dispersion and mean of several variables. Because computations are 

laborious and fairly complex and require some knowledge of matrix algebra, acceptance of 

multivariate control charts by industry was slow and hesitant, In this research.  Quality 

standards may be any one or a combination of attributes and variables of the product being 

manufactured. The attributes will include performance, reliability, appearance, commitment 

to delivery time, etc., variables may be some measurement variables like, length, width, 

height, diameter, surface finish, etc. Most of the above characteristics are related to products. 

Similarly, some of the quality characteristics of services are meeting promised due dates, 

safety, comfort, security, less waiting time, and so forth. So, the various dimensions of quality 

are performance, features, reliability, conformance, durability, serviceability, aesthetics, 

perceived quality, safety, comfort, security, commitment to due dates, less waiting time, etc. 

(Kovach, 2007) 

    Outliers are extreme values that stand out greatly from the overall pattern of values in a 

dataset or graph. Outliers are an important part of a dataset. They can hold useful information 

about your data. Outliers can give helpful insights into the data you're studying, and they can 

affect statistical results. This can potentially help you discover inconsistencies and detect any 

errors in your statistical processes (Ali et al 2019). So, knowing how to find outliers in a 

dataset will help you better understand your data. Outlier in Statistics is an extremely high or 

extremely low data point relative to the nearest data point and the rest of the neighboring co-

existing values in a data graph or dataset you're working with. An outlier is an observation 

that lies an abnormal distance from other values in a random sample from a population. 

(Charu, 2017) (Kareem et al, 2020). 

    The presence of a small proportion of outliers in a sample can have a large distorting 

influence on the sample mean and the sample variance. It is well-known that these classical 

estimators, optimal under the normality assumption, are extremely sensitive to atypical 

observations in the data. In robust statistics methods are developed that are resistant to 

outliers in the data. Robust statistics seek to provide methods that emulate popular statistical 

methods but are not unduly affected by outliers or other small departures from model 

assumptions. In statistics, (Ali and Saleh 2022) classical estimation methods rely heavily on 

assumptions that are often not met in practice. In particular, it is often assumed that the data 

errors are normally distributed, at least approximately, or that the central limit theorem can be 

relied on to produce normally distributed estimates. Unfortunately, when there are outliers in 

the data, classical estimators often have very poor performance, when judged using 

the breakdown point and the influence function, ( Farcomeni and Greco  2021). 

https://en.wikipedia.org/wiki/Statistical_assumption
https://en.wikipedia.org/wiki/Statistical_assumption
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Robust_statistics#Breakdown_point
https://en.wikipedia.org/wiki/Robust_statistics#Influence_function_and_sensitivity_curve
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2. Quality Control Chart 

    Quality Control has been a significant topic in industry since 1924 when Walter Shewhart 

published his first control chart. Managers immediately recognized the need to improve the 

quality of their products by improving the consistency of the manufacturing process. Until 

recently the primary focus has been on monitoring the quality of a process by observing a 

single variable/attribute over time and the relation of this quality characteristic to a set of 

predetermined criteria called control limits. Usually, the process is classified as in-control if 

the observed variable is within the control limits and out of control if it is outside of the 

control limits. A signal occurs when a quality characteristic’s observed value at a point in 

time is beyond the predetermined control limits. When all quality characteristics in the 

process are deemed in control, the manager can feel secure that the monitored process is 

consistent with past performance. Note that a process being in control does not necessarily 

indicate that a high-quality product is being produced, but that the quality of the product is 

consistent with what has been produced historically. At a point when the control chart signals 

and the process is assumed out of control, the quality practitioner should investigate the 

process to determine what has changed in its operation. (Thomas, 2002) 

2.1. Univariate Control Chart 

    The initial Shewhart chart, designed to monitor sample means, X  , of a process has 

developed through the implementation of runs rules and the availability of powerful 

computing facilities. It has also set the standard for a class of more elaborate control charts 

like the exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and 

moving average (MA) charts (Ali et al 2019). The need for these different charts can be 

attributed to the search for a control charting technique that adequately satisfies objectives 

such as minimizing the probability of a false alarm, enhancing the ability to detect small 

shifts, and accounting for autocorrelation. However, the application of the aforementioned 

charts has primarily been confined to the univariate case in the industry due to their ease of 

use and interpretation. (Thomas, 2002) 

2.2. Multivariate Control Chart 

    A control chart normally monitors one variable over time. Perhaps this variable is machine 

uptime, a product characteristic, or on-time delivery. There are times, however, when the 

simultaneous monitoring of two or more related variables is important. The group of control 

charts that do this is called multivariate control charts. The most familiar one of these is the 

Hotelling 
2T control chart or just the 

2T control chart. This control chart is introduced in this 

publication, (Bill, 2019), (Ali et al 2023). Hotelling 𝑇2 statistic was the first statistic known to 

be used in a multivariate control chart. This statistic is used to measure the significance of the 

shifted distance from the out-of-control mean vector, to the nominal mean vector, with the 

assumption that the covariance matrix remains constant. (Hazlina, 2013) 

    Often in industrial settings, the overall quality of a product is not determined by a single 

characteristic in a process but is a function of many variables. For many years, separate 

univariate control charts have been used to m monitors the consistency of the quality of each 

variable in a multivariate process over time. The basic assumption associated with this 

technique is that each variable functions independently of the other variables in the process; 

however, this assumption is often invalid in practice. Therefore, the need to m monitor the 

overall process, which includes accounting for the correlation structure between the variables 

as well as controlling each variable’s quality, presents a m much-needed improvement to 

simply using univariate techniques in a multivariate system. 

     Research into and implementation of multivariate control methods have become e more 

practical due to the advent of more powerful computing facilities. As computing technology 
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continues to improve, the ease of data collection and manipulation also improves. With the 

abundance of data available today, managers are becoming aware of the necessity of utilizing 

as much information as possible in monitoring the quality of their processes. Studies have 

shown that the poor quality of a process may not always be due to one variable but may be 

attributed to several variables (Hotelling 1947; Jackson 1985). 

    Multivariate quality control procedures have been developed to make use of the correlation 

structure among the variables when determining if the process is in control. Some strengths of 

these approaches are that the overall probability of a false alarm can be accurately 

determined, the variables' correlation structure is reflected in the charts, and the number of 

control charts to monitor is reduced from one per quality characteristic to one for the entire 

process. Because of these important reasons, multivariate quality control has gained much 

attention while at the same time, it has created new concerns. One m major problem is 

detecting which variable(s) are responsible for out-of-control conditions. Another problem is 

the view of multivariate quality control charts as computationally complex and laborious to 

interpret. However, to provide the best possible decision-making tools using available 

information, multivariate quality control charts are necessary (Ali et al, 2018). 

    There are many situations where simultaneous monitoring is necessary to control two or 

more related quality characteristics and monitor whether these characteristics can be 

misleading. For these situations, specific tools should be used to detect, identify, and analyze 

the meaningful causes of variability in a process. Multivariate control charts represent one of 

these techniques being used to simultaneously control several characteristics that indicate the 

quality of a single production process. The most familiar monitoring and control procedure of 

a multivariate process is the Hotelling T2 control chart, for monitoring the mean vector of the 

process. It is directly analogous to the univariate Shewhart X_ chart (Montgomery, 2009). 

Hotelling was the first researcher to know the weakness of the univariate statistical control 

charts in his pioneering paper. In the following decades, many contributors have established 

studies in the same field and extensive literature can be found, e.g.: Jackson (1985); Tracy, 

Young, and Mason (1992); Lowry and Montgomery (1995); Aparisi (1997); Nedumaran and 

Pignatiello Jr. (1999), Khoo et al. (2005); Champ and Farmer (2007), Bersimis et al. (2007), 

Frisen (2011), (Ali, 2017), (Ali and Saleh 2021) and (Ali and Jwana 2022). 

    Among the existing multivariate charts, the Hotelling 
2T control chart is the best known in 

the literature, and its applicability is most recommended for processes that have several 

quality characteristics. These characteristics are correlated and need to be monitored together. 

The 
2T  test statistic is based on Equation (1), (Willems et al 2002) 

 

      (1) 

where  corresponds to the vector of means,   and S represents the covariance matrix of the 

process. The application of the Hotelling 
2T multivariate control chart is done in two steps. In 

phase I, the limits are calculated using Equation (2) (Henning et al 2014). 

 

     (2) 

where p is the number of variables, m is the number of samples, n is the sample size, and F 

equals Snedecor’s F distribution with a degree of freedom for the numerator equal to α 

(equivalent to the rate of false positives), and for the denominator equal top, mn-m-p+1. 

 

For phase II of the application of the multivariate chart, the equation of the upper control limit 

is given by the Equation (3) (Tracy et al 1992; Bersims et al 2007), 
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     (3)  

    The lower control limit (LCL) for the two phases is equal to zero. For the use of 

multivariate control charts, it is also necessary to verify the assumptions of normality and 

independence. If the multivariate normal is not an appropriate model, there is very little 

literature available on alternative multivariate charting techniques (Bersimis et al 2007) such 

as multivariate non-parametric statistical process techniques (Chakraborti et al 2001) the 

autocorrelated multivariate process is also an area that must be further investigated. 

3. Robust Method 

    Computes the robust covariance matrix estimate of a multivariate data set X, where X is an 

N-by-P matrix where each row is an observation and each column a variable (Ali and Saleh. 

2022).  Supported algorithms are: 

I. The FASTMCD algorithm by Rousseuw and Leroy (FMCD).  

II. The OGK algorithm by Maronna and Zamar. 

III. The family of "concentration algorithms" by Olive and Hawkins (OH).   

which will be explained in detail along with the proposed methods in the formation of the 

robust charts in Section 4 

4. Proposed Chart 

    The research proposal is to create a multivariate quality control chart corresponding to the 

Shewhart (Hotelling) T2-Chart, based on robust estimates of the variables averages and the 

covariance matrix, and for three methods, namely: 

Proposed 1: depending on the algorithm Rousseuw and Leroy, the FAST-MCD (Minimum 

Covariance Determinant) method, the points drawn on the chart are calculated for the 

proposed chart and are first created (phase I). This method looks for h observations out of N 

(where N/2 < h <= N) whose classical covariance matrix has the lowest possible determinant. 

The estimate is then the covariance matrix of the h points defined above, multiplied by a 

consistency factor to obtain consistency at the multivariate normal distribution, and by a 

correction factor to correct for bias at small samples. On this basis, we obtain the estimates of 

the general average vector (MR) of the studied variables and the covariance matrix (SR) that 

is robust to outliers. 

Where MR = (MRx1, MRx2, …, MRxp), the robust mean vector represents for each variable (i 

= 1, 2, …, p), and robust covariance matrix (SR) is: 

 

      (4) 

 

That is, the sample robust variances on the main diagonal of the matrix SR, and sample robust 

covariances on the off-diagonal of the matrix SR, therefore then computed as 

 

    (5) 

 

Formula (5) is used to calculate the points drawn on the chart, while the upper control limit is 

as in Shewhart's chart on the tabular value of F (Kareem et al 2019). 
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Proposed 2: depending on the algorithm Maronna and Zamar, and using the Orthogonalized 

Gnanadesikan-Kettenring (OGK) estimate, the points drawn on the chart are calculated for the 

proposed chart and are first created (phase I). This estimate is a positive definite estimate of 

scatter starting from the Gnanadesikan and Kettering (GK) estimator, a pairwise robust scatter 

matrix that may be non-positive definite. The estimate uses a form of principal Components, 

called an orthogonalization iteration, on the pairwise scatter matrix, replacing its eigenvalues, 

which could be negative, by robust variances. This procedure can be iterated for improved 

results, and convergence is usually obtained after 2 or 3 iterations. On this basis, we obtain 

the estimates of the general average vector (MR) as in proposed 1 of the studied variables and 

the covariance matrix (SR) as in formula (4) that is robust to outliers. Therefore then  is 

computed as formula (5), and is used to calculate the points drawn on the chart, while the 

upper control limit is as in Shewhart's chart on the tabular value of F. 

Proposed 3: depending on the family of "concentration algorithms" by Olive and Hawkins 

(OH), and using the "concentration algorithm" techniques proposed by Olive and Hawkins, a 

family of fast, consistent, and highly outlier-resistant methods, the points drawn on the chart 

are calculated for the proposed chart is first created (phase I). The estimate is obtained by first 

generating trial estimates or starts, and then using the concentration technique from each trial 

fit to obtain attractors. By default, two attractors are used. The first attractor is the DGK 

(Devlin-Gnanadesikan-Kettering) attractor, where the start is the classical estimator (Shahla et 

al 2023). The second attractor is the Median Ball (MB) attractor, where the start used is Mu = 

median of data and Sigma is identity matrix by (p × p), i.e., the half set of data closest to a 

median of data in Euclidean distance. The MB attractor is used if the location estimator of the 

DGK attractor is outside of the median ball, and the attractor with the smallest determinant is 

used otherwise. The final mean estimate is the mean estimate of the chosen attractor, and the 

final covariance estimate is the covariance estimate of the chosen attractor, multiplied by a 

scaling factor to make the estimate consistent at the normal distribution. On this basis, we 

obtain the estimates of the general average vector (MR) as in proposed 1 of the studied 

variables and the covariance matrix (SR) as in formula (4) that is robust to outliers. Therefore 

then  is computed as formula (5), and is used to calculate the points drawn on the chart, 

while the upper control limit is as in Shewhart's chart on the tabular value of F (Ali et al, 

2018). 

For all supported methods, a reweighting for efficiency step is performed. This step does not 

affect the robustness but improves the efficiency of the estimator. 
 

5. Evaluation Criteria  

For comparison between the classical and the proposed chart, the total and generalized 

variance can be used for the covariance matrix as follows: 

 

    (6) 

     (7) 

 

The lowest value for the total and generalized variance is the best (Ali et al 2023). 
 

6: Application aspect 

To compare the classical and the proposed charts in terms of efficiency and accuracy 

of the estimated multivariate mean vector and covariance matrix, the simulation study was 

done by simulating the multivariate quality control chart, then the application for the real data 

based on total and generalized variance. And by designing a program in MATLAB (version 

2022a) dedicated to this purpose (Appendix).  
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6.1: Simulation study 

Two samples (p = 2) were generated for the multivariate normal distribution 

(Appendix), with a correlation coefficient (0.70), and several observations (125) for (m = 25) 

subsamples and n = 5, for all subsamples, and outliers are randomly added to the generated 

data (normal distribution), (Ali, 2022). The first simulation experiment with the values of 

Mahalanobis distance is shown in Figure (1) for the classical method and three robust 

methods. 

 
Figure 1. Mahalanobis distance for the classical method and three robust methods 

 

Figure (1) shows that the Mahalanobis distance values for the classical method have two 

outliers, while there are (8, 7, and 2) as outliers (red stars) for the robust methods (FMCD, 

OGK, and OH), respectively. The classical T2-Chart (Phase-I) is configured as in the figure 

(2): 
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Figure 2. Classical T square-Chart 

 

Figure (2) shows that there is one point outside the limits of control, so it will be deleted and a 

modified T2-Chart will be formed, as in Figure (3). 

 
Figure 3. Modified Classical T square-Chart 

 

The modified T2-Chart shows that all the points drawn on the chart are within the control 

limits, so they can be relied upon and used in the future (Phase II). 

 

The Proposed (and modified) T2-Chart (Phase-I) is configured as in figure (4-9): 
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Figure 4. Proposed (1) T square Robust-Chart 

 
Figure 5. Modified Proposed (1) T square Robust-Chart 
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Figure 6. Proposed (2) T square Robust-Chart 

 
Figure 7. Modified Proposed (2) T square Robust-Chart 
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Figure 8. Proposed (3) T square Robust-Chart 

 
Figure 9. Modified Proposed (3) T square Robust-Chart 

 

The modified proposed T2-Charts show that all the points drawn on the chart are within the 

control limits, so they can be relied upon and used in the future (Phase II). 

 

The simulation results of the first experiment for the classical and proposed charts are 

summarized in table (1): 

ExperimentFirst the Results of . 1Table  

Chart R Generalized variance Total variance Average UCL 

Classical 0.6431 0.0062 0.2088 0.5440 5.9893 
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0.4841 

Modified Classical 0.7631 0.0035 0.1822 
0.5277 

0.4802 
5.9891 

Proposed 1 (FMCD) 0.9070 0.0039 0.2954 
0.5180 

0.5144 
5.9893 

Modified Proposed 1 

(FMCD) 
0.8776 0.0031 0.2339 

0.5053 

0.4885 
5.9884 

Proposed 2 (OGK) 0.8392 0.0023 0.1780 
0.5253 

0.4888 
5.9893 

Modified Proposed 2 

(OGK) 
0.8670 0.0021 0.1832 

0.5181 

0.4781 
5.9887 

Proposed 3 (OH) 0.7946 0.0056 0.2473 
0.5219 

0.4890 
5.9893 

Modified Proposed 3 

(OH) 
0.7946 0.0056 0.2473 

0.5219 

0.4890 
5.9891 

 

Table (1) shows the classical and robust correlation coefficients for the primary and modified 

charts, the upper control limit, the mean vector, and the general and total variance. All the 

robust methods were better than the classical method, while the second proposed method 

(OGK) was the best based on the general and total variance. Also, the robust mean vector was 

lower than the classical mean vector due to the treatment of outliers. 

 

The experiment was repeated (1000) times for sample sizes (5, and 10), 2 several variables, 

and the correlation coefficient (0.70), then the average of the general and total variance was 

calculated, and the results are summarized in Table (2): 

(n = 5 and m = 25) experimentsAverage results of a thousand . 2Table  

Chart R Generalized variance Total variance Average 

Classical 0.5296 0.0099 0.2471 
0.5350 

0.5001 

Proposed 1 (FMCD) 0.7755 0.0048 0.2293 
0.4986 

0.4992 

Proposed 2 (OGK) 0.7332 0.0031 0.1646 
0.5000 

0.4984 

Proposed 3 (OH) 0.7011 0.0065 0.2275 
0.4998 

0.4989 

 

All the proposed charts were better than the classical chart when n = 5, because the averages 

of the general (0.0048, 0.0031, and 0.0065) and total (0.2293, 0.1646, and 0.2275) variance 

for the proposed charts were less than the classical chart (0.0099 and 0.2471), respectively. 

The robust chart (OGK) was better than the other robust charts. For the robust methods, the 

correlation coefficients were greater than the classical method, as well as the estimators of the 

robust mean vectors were less than the classical mean vector. 

(n = 10 and m = 25) ntsexperimeAverage results of a thousand . 3Table  

Chart R Generalized variance Total variance Average 

Classical 0.4171 0.0202 0.3725 
0.5415 

0.4994 

Proposed 1 (FMCD) 0.7999 0.0045 0.2312 
0.4992 

0.4994 

Proposed 2 (OGK) 0.7318 0.0031 0.1648 0.5002 
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0.4989 

Proposed 3 (OH) 0.6964 0.0066 0.2268 
0.5001 

0.4991 

 

From Table (3), we note that all the proposed charts were better than the classical chart when 

n = 10, because the averages of the general (0.0045, 0.0031, and 0.0066) and total (0.2312, 

0.1648, and 0.2268) variance for the proposed charts were less than the classical chart (0.0202 

and 0.3725), respectively. Also, the robust chart (OGK) was better than the other robust 

charts. For the robust methods, the correlation coefficients were greater than the classical 

method, as well as the estimators of the robust mean vectors were less than the classical mean 

vector. Finally, when the sample size was increased, the classical chart was less accurate, 

while the proposed charts maintained their accuracy. 

6.2. Real data 

The real data contains various measured variables for about 200 automobiles from the 

1970s and 1980s. We'll illustrate multivariate visualization using the values for fuel efficiency 

(in miles per gallon, MPG), acceleration (time from 0-60MPH in a sec), engine displacement 

(in cubic inches), and horsepower. We'll use the number of cylinders to group observations 

for (m = 20) subsamples and n = 10, for all subsamples. The real data with the values of 

Mahalanobis distance is shown in Figure (10) for the classical method and three robust 

methods. 

 
Figure 10. Mahalanobis distance for real data and three robust methods 

Figure (10) shows that the Mahalanobis distance values for the classical method have several 

outliers (red stars), for the robust methods (FMCD, OGK, and OH). The classical T2-Chart 

(Phase-I) is configured as in the figure (11): 
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Figure 11. Classical T square-Chart for real data 

The T2-Chart shows that all the points drawn on the chart are within the control limits, so they 

can be relied upon and used in the future (Phase II). The Proposed (OGK) T2-Chart (Phase-I) 

is configured as in the figure (12): 

 
Figure 12. Proposed (2) T square Robust-Chart for real data 

The Proposed (OGK) T2-Chart shows that all the points drawn on the chart are within the 

control limits, so they can be relied upon and used in the future (Phase II). The real data 

results for the classical and proposed (OGK) chart are summarized in table (4): 

Results of real data. 4Table  

Chart 
Generalized 

variance 
Total variance Average UCL 

Classical 60151000 9433.4 

21.5150 

15.8355 

190.230 

102.075 

18.6948 

Proposed 2 (OGK) 39538000 8263.3 
22.4017 

16.1523 
18.6948 
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173.586 

95.3506 

 

Table (4) shows the proposed method (OGK) was the best based on the general and total 

variance. Also, the robust mean vector was lower than the classical mean vector due to the 

treatment of outliers. 

7. Conclusion & Recommendations 

Through the study of simulation and real data, the following main conclusions and 

recommendations were summarized: 

 

7.1 Conclusions 

1- All the proposed charts were better than the classical method. 

2-The robust chart (OGK) was better than the other robust charts.  

3-The robust correlation coefficients were greater than the classical correlation coefficient. 

4- The estimators of the robust mean vectors were less than the classical mean vector.  

5-when the sample size was increased, the classical chart was less accurate, while the 

proposed charts maintained their accuracy. 

7.2 Recommendations 

1. Using robust methods when outliers are present in construction the T2-Chart, and especially 

the robust (OGK) method. 

2. Conducting a prospective study on the use of robust methods in the construction of the     

S-Chart. 

3. Conducting a prospective study on the use of multivariate wavelet in the construction of the 

T2-Chart. 

4. Conducting a prospective study on the use of multivariate wavelet with robust methods in 

the construction of the T2-Chart and S-Chart. 
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Appendix 

clc 

clear all 

rng default; n=5;m=25;K=2;J=125; rho = [1,0.7;0.7,1]; u = copularnd('Gaussian',rho,J); 

noise = randperm(J,3); u(noise,1) = u(noise,1)*4; [Sfmcd, Mfmcd, dfmcd, Outfmcd] = robustcov(u); 

[Sogk, Mogk, dogk, Outogk] = robustcov(u,'Method','ogk'); [Soh, Moh, doh, Outoh] = 

robustcov(u,'Method','olivehawkins'); d_classical = pdist2(u, mean(u),'mahal'); p = size(u,2); 

chi2quantile = sqrt(chi2inv(0.975,p)); tiledlayout(2,2); nexttile; plot(d_classical, dfmcd, 'o') 

line([chi2quantile, chi2quantile], [0, 30], 'color', 'r'); line([0, 6], [chi2quantile, chi2quantile], 'color', 'r') 

hold on; plot(d_classical(Outfmcd), dfmcd(Outfmcd), 'r+'); xlabel('Mahalanobis Distance') 

ylabel('Robust Distance'); title('DD Plot, FMCD method'); hold off; nexttile; plot(d_classical, dogk, 'o') 

line([chi2quantile, chi2quantile], [0, 30], 'color', 'r'); line([0, 6], [chi2quantile, chi2quantile], 'color', 'r') 

hold on; plot(d_classical(Outogk), dogk(Outogk), 'r+'); xlabel('Mahalanobis Distance') 

ylabel('Robust Distance'); title('DD Plot, OGK method'); hold off; nexttile; plot(d_classical, doh, 'o') 

http://www.spcforexcel.com/
javascript:;
https://www.routledge.com/search?author=Alessio%20Farcomeni
https://www.routledge.com/search?author=Luca%20Greco


Sedeeq. B. et al .2024, 28 (1): 140-157                                                               Zanco Journal of Human Sciences                                                                           

 

 
 156 

line([chi2quantile, chi2quantile], [0, 30], 'color', 'r'); line([0, 6], [chi2quantile, chi2quantile], 'color', 'r') 

hold on; plot(d_classical(Outoh), doh(Outoh), 'r+'); xlabel('Mahalanobis Distance') 

ylabel('Robust Distance'); title('DD Plot, Olive-Hawkins method'); hold off 

number1 =sum(Outfmcd); number2 =sum(Outogk); number3 =sum(Outoh); 

% quality control 

x1=u(:,1);x2=u(:,2);x=[x1,x2]; [S M]=robustcov(x,'Method','fmcd'); r=corr(x);s=1; for i=1:m 

    m1(i,:)=mean(x(s:s+4,:));     s=s+5;   end 

% PROPOSED CHART 

for i=1:m ; d(:,i)=m1(i,:)-M; T(:,i)=n*d(:,i)'*inv(S)*d(:,i); end; T; 

U=1:m;alfa=.05;df1=K;df2=m*n-m-K+1; tabF=finv(1-alfa,df1,df2); 

for i=1:m 

UCL(i)=((K*(m-1)*(n-1))/(m*n-m-K+1))*tabF; LCL(i)=0; 

end 

plot(U,T,'bo',U,UCL,'-',U,LCL,'-') 

R=S(1,2)/(sqrt(S(1,1)*S(2,2))), D=det(S), total=trace(S), AVERAG=M, UCL=UCL(1) 
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  2Tىلىهێلكارىىهۆتێلينگگهكردنىلهراوردىوىبه  ىهێزىارىىبهىهێلكبنياتنانى

 

ىحسينىعلىىطهىاسراءىمۆيدعلىىمحمدىىزينبىعبداللهىى1بيخالىصمدىصديقى

، كۆلێژی كان يهزانياريئامارو  ەشی ب

 ، بوورىبردن وئارێوه به

 رهەولێ-زانكۆی سەلاحەددین 

 یژ ێلۆ كان ، كئامارو زانيارييه یشەب

 وئابوورى،  بردنوه ێر به

 رێولەه-ن یددەحلا ەس ۆیزانك

 یژ ێلۆ كان ، كئامارو زانيارييه یشەب

 وئابوورى،  بردنوه ێر به

 رێولەه-ن یددەلاحەس ۆیزانك

 یژ ێلۆ كان ، كئامارو زانيارييه یشەب

 وئابوورى،  بردنوه ێر به

ىرێولەه-ن یددەلاحەس ۆیزانك

bikhal.sedeeq@su.edu.krdىzainab.muhammad@su.edu.krdىisraa.ali@su.edu.krdىtaha.ali@su.edu.krd 

 

ىىپوختەى

سێ ڕێگا    كارهێنان به   به   كىرهده   ىنرخ    دژى  ههێز به ىى2T   ىر هێلكار رامبهبهىى    یاو ۆڕ گەفر   ێىنو   كىهیکارێڵه  بۆ بنياتنان   ەکراو   اریشنێپ  دا،ەیەو ەنیژێتو   مەل

راوردكردن  (  پاشان بهThe family of "concentration algorithms" by Olive and Hawkins( و )Maronna and Zamar)  و   (Rousseuw and Leroyك )وه 

ى  يماتريكس( و جياوازى  كان بۆ جياوازيكيهرهسه   ى تيره كهجياوازى گشتى ) كۆى يه   ستن به پشت به   ر شيوارت وه كلاسيكى توێژه نێوان ڕێگاكان پێشنياركراو    له

به سنوردالركر   ماتريكسى  ى) جياواز   ىگشت بۆ  )به  ى كاراترين هێلكار ى  ست هێنانيدهاو  داتاي    وه ييكردنه ڕێگاي لاسا  له  ركىره ده   ىنرخ  دژى  (ستڕۆبه هێز  و 

كان پێشنياركراوه   ى  كار هێل  كهى  نجامهو ئه ئه   يشتهگه  كهوه . ڵێكۆڵينهديزاين كراوه   ستهبهم مهبۆ ئه  زمان ماتلاب كه  ك لهيهرنامهكارهێنان بهبه  به  قينههڕاست

 كلاسيك.  ىشێواز  ن و كاراترن له كهده   كىرهده  ىنرخ ىر كاريگه ى كێشه ىر سه چاره
 

    .2Tىهێلكار  كىرهده  ىنرخ ،هێزبه ،گۆراوجۆرى فره ى هێلكارى دڵنيا :یەكانىیسەرەكىىووشە

 

 ىىىىى2Tىى-ىمقارنتهاىمعىلوحةىهوتلنكنةىوىالحصيىىىى تكوينىلوحة

ىحسينىعلىىطهىاسراءىمۆيدعلىىمحمدىىزينبىعبداللهىىخالىصمدىصديقىيب

كلیة  تية ،قسم الاحصاء والمعلوما

 الادارة والاقتصاد ،

 أربيل –  نیصلاح الد جامعة

  ةیقسم الاحصاء والمعلوماتية ،كل

 الادارة والاقتصاد ،

 أربيل –  نیصلاح الد جامعة

  ةیية ،كلوالمعلوماتحصاء قسم الا 

 قتصاد ،الادارة والا 

 أربيل –  نیصلاح الد جامعة

  ةیقسم الاحصاء والمعلوماتية ،كل

 الادارة والاقتصاد ،

ىأربيل –  نیصلاح الد جامعة

bikhal.sedeeq@su.edu.krdىzainab.muhammad@su.edu.krdىisraa.ali@su.edu.krdىtaha.ali@su.edu.krd 

ى

ىملخصى

ستخدام ثلاث طرائق وهي خوارزمية  القيم الشاذة باحصينة ضد    2T -  مقابلة للوحة    دد المتغيرات تكوين لوحات جديدة لمتع  اقتراحالبحث    ا تم في هذ

(Rousseuw and Leroy( ،)Maronna and Zamar  )و   (The family of "concentration algorithms" by Olive and Hawkins  .) ائق  ثم المقارنة بين الطر

التباين( التباين الكلي )مجموع عناصر القطر الرئيسي لمصفو على    شيوارت اعتمادا  للباحثالمقترحة والتقليدية   التباين( والتباين العام )محدد مصفوفة  فة 

رنامج بلغة ماتلاب مصمم لهذا الغرض. وتوصلت  ب  وباستخداماة والبيانات الحقيقية  من خلال المحاكلوحات حصينة ضد القيم الشاذة  للحصول على أكفأ  

          من الطريقة التقليدية.أكبر كفاءة حة عالجت مشكلة تأثير القيم الشاذة وذات لوحات المقتر دراسة إلى أن ال ال
 

ى .2Tلوحة ،م الشاذةالقي ،الحصينة ،: لوحات السيطرة النوعية متعددة المتغيراتالمفتاحيةىالكلماتى

 

ى

 

 

 

 

  


