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Abstract

This paper proposes a new multivariate
chart corresponding to a T2- chart robust to
outliers using three methods, namely the
Rousseuw and Leroy algorithm, Maronna
and Zamar, and the family of
"concentration algorithms™ by Olive and
Hawkins. Then the comparison between
the proposed and classical method of the
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for this purpose. The study concluded that
the proposed charts dealt with the problem
of the influence of outliers and were more
efficient than the classical method.
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1. Introduction

Quality Control Charts have historically been used to monitor product quality in a production
or manufacturing environment. Their general purpose is to provide information that can be
used to uncover discrepancies or systematic patterns by comparing expected variance and
observed variance. In a production environment, it is important to improve product quality
and productivity to maximize a company’s profits (Deming, 1982)

Many different variations of control charts can be used to detect when processes go out of
control. The most common and easily interpretable of these is the Shewart control chart (Ali
et al 2017). These charts, named after Walter Shewart, were created from the assumption that
every process that has variation can be understood and statistically monitored. A Shewart
chart includes three horizontal lines, a center line, an upper limit, and a lower limit, and is the
basis for all control charts (Ali and Esraa, 2016). The center line serves as a baseline and is
typically the expected value or the mean value, while the upper and lower limits are depicted
by baselines and are evenly spaced below and above the baseline. (Montgomery, 2009)

On another side, it is a fact of life that most data are naturally multivariate (or Bivariate).
Hotelling in 1947 introduced a statistic that uniquely lends itself to plotting multivariate
observations. This statistic, appropriately named Hotelling's T2, is a scalar that combines
information from the dispersion and mean of several variables. Because computations are
laborious and fairly complex and require some knowledge of matrix algebra, acceptance of
multivariate control charts by industry was slow and hesitant, In this research. Quality
standards may be any one or a combination of attributes and variables of the product being
manufactured. The attributes will include performance, reliability, appearance, commitment
to delivery time, etc., variables may be some measurement variables like, length, width,
height, diameter, surface finish, etc. Most of the above characteristics are related to products.
Similarly, some of the quality characteristics of services are meeting promised due dates,
safety, comfort, security, less waiting time, and so forth. So, the various dimensions of quality
are performance, features, reliability, conformance, durability, serviceability, aesthetics,
perceived quality, safety, comfort, security, commitment to due dates, less waiting time, etc.
(Kovach, 2007)

Outliers are extreme values that stand out greatly from the overall pattern of values in a
dataset or graph. Outliers are an important part of a dataset. They can hold useful information
about your data. Outliers can give helpful insights into the data you're studying, and they can
affect statistical results. This can potentially help you discover inconsistencies and detect any
errors in your statistical processes (Ali et al 2019). So, knowing how to find outliers in a
dataset will help you better understand your data. Outlier in Statistics is an extremely high or
extremely low data point relative to the nearest data point and the rest of the neighboring co-
existing values in a data graph or dataset you're working with. An outlier is an observation
that lies an abnormal distance from other values in a random sample from a population.
(Charu, 2017) (Kareem et al, 2020).

The presence of a small proportion of outliers in a sample can have a large distorting
influence on the sample mean and the sample variance. It is well-known that these classical
estimators, optimal under the normality assumption, are extremely sensitive to atypical
observations in the data. In robust statistics methods are developed that are resistant to
outliers in the data. Robust statistics seek to provide methods that emulate popular statistical
methods but are not unduly affected by outliers or other small departures from model
assumptions. In statistics, (Ali and Saleh 2022) classical estimation methods rely heavily on
assumptions that are often not met in practice. In particular, it is often assumed that the data
errors are normally distributed, at least approximately, or that the central limit theorem can be
relied on to produce normally distributed estimates. Unfortunately, when there are outliers in
the data, classical estimators often have very poor performance, when judged using
the breakdown point and the influence function, ( Farcomeni and Greco 2021).
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2. Quality Control Chart

Quality Control has been a significant topic in industry since 1924 when Walter Shewhart
published his first control chart. Managers immediately recognized the need to improve the
quality of their products by improving the consistency of the manufacturing process. Until
recently the primary focus has been on monitoring the quality of a process by observing a
single variable/attribute over time and the relation of this quality characteristic to a set of
predetermined criteria called control limits. Usually, the process is classified as in-control if
the observed variable is within the control limits and out of control if it is outside of the
control limits. A signal occurs when a quality characteristic’s observed value at a point in
time is beyond the predetermined control limits. When all quality characteristics in the
process are deemed in control, the manager can feel secure that the monitored process is
consistent with past performance. Note that a process being in control does not necessarily
indicate that a high-quality product is being produced, but that the quality of the product is
consistent with what has been produced historically. At a point when the control chart signals
and the process is assumed out of control, the quality practitioner should investigate the
process to determine what has changed in its operation. (Thomas, 2002)

2.1. Univariate Control Chart

The initial Shewhart chart, designed to monitor sample means, X , of a process has
developed through the implementation of runs rules and the availability of powerful
computing facilities. It has also set the standard for a class of more elaborate control charts
like the exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and
moving average (MA) charts (Ali et al 2019). The need for these different charts can be
attributed to the search for a control charting technique that adequately satisfies objectives
such as minimizing the probability of a false alarm, enhancing the ability to detect small
shifts, and accounting for autocorrelation. However, the application of the aforementioned
charts has primarily been confined to the univariate case in the industry due to their ease of
use and interpretation. (Thomas, 2002)

2.2. Muultivariate Control Chart

A control chart normally monitors one variable over time. Perhaps this variable is machine
uptime, a product characteristic, or on-time delivery. There are times, however, when the
simultaneous monitoring of two or more related variables is important. The group of control
charts that do this is called multivariate control charts. The most familiar one of these is the
Hotelling T *control chart or just the T*control chart. This control chart is introduced in this
publication, (Bill, 2019), (Ali et al 2023). Hotelling T? statistic was the first statistic known to
be used in a multivariate control chart. This statistic is used to measure the significance of the
shifted distance from the out-of-control mean vector, to the nominal mean vector, with the
assumption that the covariance matrix remains constant. (Hazlina, 2013)

Often in industrial settings, the overall quality of a product is not determined by a single
characteristic in a process but is a function of many variables. For many years, separate
univariate control charts have been used to m monitors the consistency of the quality of each
variable in a multivariate process over time. The basic assumption associated with this
technique is that each variable functions independently of the other variables in the process;
however, this assumption is often invalid in practice. Therefore, the need to m monitor the
overall process, which includes accounting for the correlation structure between the variables
as well as controlling each variable’s quality, presents a m much-needed improvement to
simply using univariate techniques in a multivariate system.

Research into and implementation of multivariate control methods have become e more
practical due to the advent of more powerful computing facilities. As computing technology
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continues to improve, the ease of data collection and manipulation also improves. With the
abundance of data available today, managers are becoming aware of the necessity of utilizing
as much information as possible in monitoring the quality of their processes. Studies have
shown that the poor quality of a process may not always be due to one variable but may be
attributed to several variables (Hotelling 1947; Jackson 1985).

Multivariate quality control procedures have been developed to make use of the correlation
structure among the variables when determining if the process is in control. Some strengths of
these approaches are that the overall probability of a false alarm can be accurately
determined, the variables' correlation structure is reflected in the charts, and the number of
control charts to monitor is reduced from one per quality characteristic to one for the entire
process. Because of these important reasons, multivariate quality control has gained much
attention while at the same time, it has created new concerns. One m major problem is
detecting which variable(s) are responsible for out-of-control conditions. Another problem is
the view of multivariate quality control charts as computationally complex and laborious to
interpret. However, to provide the best possible decision-making tools using available
information, multivariate quality control charts are necessary (Ali et al, 2018).

There are many situations where simultaneous monitoring is necessary to control two or
more related quality characteristics and monitor whether these characteristics can be
misleading. For these situations, specific tools should be used to detect, identify, and analyze
the meaningful causes of variability in a process. Multivariate control charts represent one of
these techniques being used to simultaneously control several characteristics that indicate the
quality of a single production process. The most familiar monitoring and control procedure of
a multivariate process is the Hotelling T2 control chart, for monitoring the mean vector of the
process. It is directly analogous to the univariate Shewhart X_ chart (Montgomery, 2009).
Hotelling was the first researcher to know the weakness of the univariate statistical control
charts in his pioneering paper. In the following decades, many contributors have established
studies in the same field and extensive literature can be found, e.g.: Jackson (1985); Tracy,
Young, and Mason (1992); Lowry and Montgomery (1995); Aparisi (1997); Nedumaran and
Pignatiello Jr. (1999), Khoo et al. (2005); Champ and Farmer (2007), Bersimis et al. (2007),
Frisen (2011), (Ali, 2017), (Ali and Saleh 2021) and (Ali and Jwana 2022).

Among the existing multivariate charts, the Hotelling T control chart is the best known in
the literature, and its applicability is most recommended for processes that have several
quality characteristics. These characteristics are correlated and need to be monitored together.
The T test statistic is based on Equation (1), (Willems et al 2002)

T? =n(x —x)' S 1(x — %) (1)
where X corresponds to the vector of means, X and S represents the covariance matrix of the
process. The application of the Hotelling T *multivariate control chart is done in two steps. In

phase I, the limits are calculated using Equation (2) (Henning et al 2014).

p(m-1)(n-1)
mn—m-—-p+1
where p is the number of variables, m is the number of samples, n is the sample size, and F
equals Snedecor’s F distribution with a degree of freedom for the numerator equal to o
(equivalent to the rate of false positives), and for the denominator equal top, mn-m-p+1.

UCL = a,pmn—-m—p+1 )

For phase Il of the application of the multivariate chart, the equation of the upper control limit
is given by the Equation (3) (Tracy et al 1992; Bersims et al 2007),
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p(m+1)(n—1)
UCL = mn—-m-p+1 a,pmn—-m-—p+1 3)
The lower control limit (LCL) for the two phases is equal to zero. For the use of
multivariate control charts, it is also necessary to verify the assumptions of normality and
independence. If the multivariate normal is not an appropriate model, there is very little
literature available on alternative multivariate charting techniques (Bersimis et al 2007) such
as multivariate non-parametric statistical process techniques (Chakraborti et al 2001) the

autocorrelated multivariate process is also an area that must be further investigated.
3. Robust Method

Computes the robust covariance matrix estimate of a multivariate data set X, where X is an
N-by-P matrix where each row is an observation and each column a variable (Ali and Saleh.
2022). Supported algorithms are:

I. The FASTMCD algorithm by Rousseuw and Leroy (FMCD).
I1. The OGK algorithm by Maronna and Zamar.
I11. The family of "concentration algorithms" by Olive and Hawkins (OH).

which will be explained in detail along with the proposed methods in the formation of the
robust charts in Section 4

4. Proposed Chart

The research proposal is to create a multivariate quality control chart corresponding to the
Shewhart (Hotelling) T2-Chart, based on robust estimates of the variables averages and the
covariance matrix, and for three methods, namely:

Proposed 1: depending on the algorithm Rousseuw and Leroy, the FAST-MCD (Minimum
Covariance Determinant) method, the points drawn on the chart are calculated for the
proposed chart and are first created (phase 1). This method looks for h observations out of N
(where N/2 < h <= N) whose classical covariance matrix has the lowest possible determinant.
The estimate is then the covariance matrix of the h points defined above, multiplied by a
consistency factor to obtain consistency at the multivariate normal distribution, and by a
correction factor to correct for bias at small samples. On this basis, we obtain the estimates of
the general average vector (MR) of the studied variables and the covariance matrix (SR) that
IS robust to outliers.

Where MR = (MRx1, MRX, ..., MRXp), the robust mean vector represents for each variable (i
=1,2,...,p), and robust covariance matrix (SR) is:

ST, ST, ST,

XX, XXy X1Xp
STy x STy x STy x
2X1 2X2 2Xp

SR=| . . : 4)
erpx1 STxsz e erpxp

That is, the sample robust variances on the main diagonal of the matrix SR, and sample robust
covariances on the off-diagonal of the matrix SR, therefore then computed as

T? =n(x — MR) SR™'(x — MR)) (5)

Formula (5) is used to calculate the points drawn on the chart, while the upper control limit is
as in Shewhart's chart on the tabular value of F (Kareem et al 2019).
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Proposed 2: depending on the algorithm Maronna and Zamar, and using the Orthogonalized
Gnanadesikan-Kettenring (OGK) estimate, the points drawn on the chart are calculated for the
proposed chart and are first created (phase 1). This estimate is a positive definite estimate of
scatter starting from the Gnanadesikan and Kettering (GK) estimator, a pairwise robust scatter
matrix that may be non-positive definite. The estimate uses a form of principal Components,
called an orthogonalization iteration, on the pairwise scatter matrix, replacing its eigenvalues,
which could be negative, by robust variances. This procedure can be iterated for improved
results, and convergence is usually obtained after 2 or 3 iterations. On this basis, we obtain
the estimates of the general average vector (MR) as in proposed 1 of the studied variables and
the covariance matrix (SR) as in formula (4) that is robust to outliers. Therefore then TZ is
computed as formula (5), and is used to calculate the points drawn on the chart, while the
upper control limit is as in Shewhart's chart on the tabular value of F.

Proposed 3: depending on the family of "concentration algorithms” by Olive and Hawkins
(OH), and using the "concentration algorithm™ techniques proposed by Olive and Hawkins, a
family of fast, consistent, and highly outlier-resistant methods, the points drawn on the chart
are calculated for the proposed chart is first created (phase I). The estimate is obtained by first
generating trial estimates or starts, and then using the concentration technique from each trial
fit to obtain attractors. By default, two attractors are used. The first attractor is the DGK
(Devlin-Gnanadesikan-Kettering) attractor, where the start is the classical estimator (Shahla et
al 2023). The second attractor is the Median Ball (MB) attractor, where the start used is Mu =
median of data and Sigma is identity matrix by (p x p), i.e., the half set of data closest to a
median of data in Euclidean distance. The MB attractor is used if the location estimator of the
DGK attractor is outside of the median ball, and the attractor with the smallest determinant is
used otherwise. The final mean estimate is the mean estimate of the chosen attractor, and the
final covariance estimate is the covariance estimate of the chosen attractor, multiplied by a
scaling factor to make the estimate consistent at the normal distribution. On this basis, we
obtain the estimates of the general average vector (MR) as in proposed 1 of the studied
variables and the covariance matrix (SR) as in formula (4) that is robust to outliers. Therefore
then T2 is computed as formula (5), and is used to calculate the points drawn on the chart,
while the upper control limit is as in Shewhart's chart on the tabular value of F (Ali et al,
2018).

For all supported methods, a reweighting for efficiency step is performed. This step does not
affect the robustness but improves the efficiency of the estimator.

5. Evaluation Criteria

For comparison between the classical and the proposed chart, the total and generalized
variance can be used for the covariance matrix as follows:

Total Variance = trace (SR) (6)
General Variance = [SR] (7)

The lowest value for the total and generalized variance is the best (Ali et al 2023).

6: Application aspect

To compare the classical and the proposed charts in terms of efficiency and accuracy
of the estimated multivariate mean vector and covariance matrix, the simulation study was
done by simulating the multivariate quality control chart, then the application for the real data
based on total and generalized variance. And by designing a program in MATLAB (version
2022a) dedicated to this purpose (Appendix).
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6.1: Simulation study

Two samples (p = 2) were generated for the multivariate normal distribution
(Appendix), with a correlation coefficient (0.70), and several observations (125) for (m = 25)
subsamples and n = 5, for all subsamples, and outliers are randomly added to the generated
data (normal distribution), (Ali, 2022). The first simulation experiment with the values of
Mahalanobis distance is shown in Figure (1) for the classical method and three robust

Robust Distance Robust Distance

Robust Distance
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DD Plot, FMCD method

=

=
I

2
I
3]

\

g y
& | | | |
0 1 2 4 6 7 8
Mahalanobis Distance
DD Plot, OGK method
\
&
o |
\ | \
0 1 2 4 6 7 8
Mahalanobis Distance
DD Plot, Olive-Hawkins method
\
o o
b
\ \ \ -
0 1 2 4 6 7 8
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Figure 1. Mahalanobis distance for the classical method and three robust methods

Figure (1) shows that the Mahalanobis distance values for the classical method have two
outliers, while there are (8, 7, and 2) as outliers (red stars) for the robust methods (FMCD,
OGK, and OH), respectively. The classical T?-Chart (Phase-I) is configured as in the figure

(2):
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Figure 2. Classical T square-Chart

Figure (2) shows that there is one point outside the limits of control, so it will be deleted and a
modified T2-Chart will be formed, as in Figure (3).

Modified T square-Chart

8 T T T
7 —
6 UCL=5.9891
5
4 _
3 _
2

1 -
0 LCL=0
1 -
o | | | | |

0] 5 10 15 20 25

No. of Samples

Figure 3. Modified Classical T square-Chart

The modified T2-Chart shows that all the points drawn on the chart are within the control
limits, so they can be relied upon and used in the future (Phase II).

The Proposed (and modified) T2-Chart (Phase-1) is configured as in figure (4-9):
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Figure 4. Proposed (1) T square Robust-Chart
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Figure 5. Modified Proposed (1) T square Robust-Chart
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Figure 6. Proposed (2) T square Robust-Chart
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Figure 7. Modified Proposed (2) T square Robust-Chart
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Figure 8. Proposed (3) T square Robust-Chart
Modified T square Robust-Chart
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Figure 9. Modified Proposed (3) T square Robust-Chart

The modified proposed T?-Charts show that all the points drawn on the chart are within the
control limits, so they can be relied upon and used in the future (Phase I1).

The simulation results of the first experiment for the classical and proposed charts are
summarized in table (1):

Table 1. Results of the First Experiment
Chart R Generalized variance | Total variance | Average | UCL
Classical 0.6431 0.0062 0.2088 0.5440 | 5.9893
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0.4841
Modified Classical | 0.7631 0.0035 0.1822 0.5277 1 5 9891
: ' ' 0.4802 | >
Proposed 1 (FMCD) | 0.9070 0.0039 0.2954 8'2122 5.9893
Modified Proposed 1 0.5053
g 0.8776 0.0031 0.2339 Do0s | 59884
Proposed 2 (OGK) | 0.8392 0.0023 0.1780 D | 5.9893
Modified Proposed 2 0.5181
o0k, 0.8670 0.0021 0.1832 D101 | 59887
Proposed 3 (OH) | 0.7946 0.0056 0.2473 ooy | 5.9893
Modified Proposed 3 0.5219
o) 0.7946 0.0056 0.2473 Doas) | 5.9801

Table (1) shows the classical and robust correlation coefficients for the primary and modified
charts, the upper control limit, the mean vector, and the general and total variance. All the
robust methods were better than the classical method, while the second proposed method
(OGK) was the best based on the general and total variance. Also, the robust mean vector was
lower than the classical mean vector due to the treatment of outliers.

The experiment was repeated (1000) times for sample sizes (5, and 10), 2 several variables,
and the correlation coefficient (0.70), then the average of the general and total variance was
calculated, and the results are summarized in Table (2):

Table 2. Average results of a thousand experiments (n =5 and m = 25)

Chart R Generalized variance | Total variance | Average
Classical 0.5296 0.0099 0.2471 8288(1)
Proposed 1 (FMCD) 0.7755 0.0048 0.2293 gjggg
Proposed 2 (OGK) 0.7332 0.0031 0.1646 8451832
Proposed 3 (OH) 0.7011 0.0065 0.2275 gjggg

All the proposed charts were better than the classical chart when n = 5, because the averages
of the general (0.0048, 0.0031, and 0.0065) and total (0.2293, 0.1646, and 0.2275) variance
for the proposed charts were less than the classical chart (0.0099 and 0.2471), respectively.
The robust chart (OGK) was better than the other robust charts. For the robust methods, the
correlation coefficients were greater than the classical method, as well as the estimators of the
robust mean vectors were less than the classical mean vector.

Table 3. Average results of a thousand experiments (n = 10 and m = 25)

Chart R Generalized variance | Total variance Average

. 0.5415

Classical 0.4171 0.0202 0.3725 0.4994
Proposed 1 (FMCD) 0.7999 0.0045 0.2312 8383421
Proposed 2 (OGK) 0.7318 0.0031 0.1648 0.5002
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0.4989

Proposed 3 (OH) 0.6964 0.0066

0.5001

0.2268 0.4991

From Table (3), we note that all the proposed charts were better than the classical chart when
n = 10, because the averages of the general (0.0045, 0.0031, and 0.0066) and total (0.2312,
0.1648, and 0.2268) variance for the proposed charts were less than the classical chart (0.0202
and 0.3725), respectively. Also, the robust chart (OGK) was better than the other robust
charts. For the robust methods, the correlation coefficients were greater than the classical
method, as well as the estimators of the robust mean vectors were less than the classical mean
vector. Finally, when the sample size was increased, the classical chart was less accurate,
while the proposed charts maintained their accuracy.

6.2. Real data

Robust Distance
N N w
=) S S

o

- N w
=) S S

Robust Distance

o

30

Robust Distance

(

The real data contains various measured variables for about 200 automobiles from the
1970s and 1980s. We'll illustrate multivariate visualization using the values for fuel efficiency
(in miles per gallon, MPG), acceleration (time from 0-60MPH in a sec), engine displacement
(in cubic inches), and horsepower. We'll use the number of cylinders to group observations
for (m = 20) subsamples and n = 10, for all subsamples. The real data with the values of
Mahalanobis distance is shown in Figure (10) for the classical method and three robust
methods.

DD Plot, FMCD method
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Figure 10. Mahalanobis distance for real data and three robust methods
Figure (10) shows that the Mahalanobis distance values for the classical method have several
outliers (red stars), for the robust methods (FMCD, OGK, and OH). The classical T?-Chart

Phase-I) is configured as in the figure (11):
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. Classical T square
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Figure 11. Classical T square-Chart for real data
The T2-Chart shows that all the points drawn on the chart are within the control limits, so they
can be relied upon and used in the future (Phase I1). The Proposed (OGK) T2-Chart (Phase-I)
is configured as in the figure (12):

A Proposed T square
20 T T I | |

Mo. of Samples
Figure 12. Proposed (2) T square Robust-Chart for real data
The Proposed (OGK) T2-Chart shows that all the points drawn on the chart are within the
control limits, so they can be relied upon and used in the future (Phase Il). The real data
results for the classical and proposed (OGK) chart are summarized in table (4):

Table 4. Results of real data

Chart Gene_rallzed Total variance Average UCL
variance

21.5150
. 15.8355

Classical 60151000 9433.4 190.230 18.6948
102.075
22.4017

Proposed 2 (OGK) 39538000 8263.3 16.1523 18.6948
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173.586
95.3506

Table (4) shows the proposed method (OGK) was the best based on the general and total
variance. Also, the robust mean vector was lower than the classical mean vector due to the
treatment of outliers.

7. Conclusion & Recommendations

Through the study of simulation and real data, the following main conclusions and
recommendations were summarized:

7.1 Conclusions

1- All the proposed charts were better than the classical method.

2-The robust chart (OGK) was better than the other robust charts.

3-The robust correlation coefficients were greater than the classical correlation coefficient.

4- The estimators of the robust mean vectors were less than the classical mean vector.

5-when the sample size was increased, the classical chart was less accurate, while the
proposed charts maintained their accuracy.

7.2 Recommendations

1. Using robust methods when outliers are present in construction the T2-Chart, and especially
the robust (OGK) method.

2. Conducting a prospective study on the use of robust methods in the construction of the
S-Chart.

3. Conducting a prospective study on the use of multivariate wavelet in the construction of the
T?-Chart.

4. Conducting a prospective study on the use of multivariate wavelet with robust methods in
the construction of the T2-Chart and S-Chart.
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Appendix

clc

clear all

rng default; n=5;m=25;K=2;J=125; rho = [1,0.7;0.7,1]; u = copularnd(‘Gaussian’,rho,J);

noise = randperm(J,3); u(noise,1) = u(noise,1)*4; [Sfmcd, Mfmcd, dfmcd, Outfmcd] = robustcov(u);
[Sogk, Mogk, dogk, Outogk] = robustcov(u,'Method','ogk’); [Soh, Moh, doh, Outoh] =
robustcov(u,'Method','olivehawkins'); d_classical = pdist2(u, mean(u),'mahal’); p = size(u,2);
chi2quantile = sqrt(chi2inv(0.975,p)); tiledlayout(2,2); nexttile; plot(d_classical, dfmcd, '0")
line([chi2quantile, chi2quantile], [0, 30], ‘color', 'r'); line([0, 6], [chi2quantile, chi2quantile], ‘color’, 'r")
hold on; plot(d_classical(Outfmcd), dfmcd(Outfmcd), 'r+); xlabel('Mahalanobis Distance")
ylabel('Robust Distance'); title('DD Plot, FMCD method"); hold off; nexttile; plot(d_classical, dogk, ‘o)
line([chi2quantile, chi2quantile], [0, 30], 'color’, 'r"); line([O, 6], [chi2quantile, chi2quantile], 'color’, 'r)
hold on; plot(d_classical(Outogk), dogk(Outogk), 'r+"); xlabel('"Mahalanobis Distance’)

ylabel('Robust Distance); title('DD Plot, OGK method'); hold off; nexttile; plot(d_classical, doh, '0")
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line([chi2quantile, chi2quantile], [0, 30], ‘color’, 'r"); line([0, 6], [chi2quantile, chi2quantile], ‘color’, 'r")

hold on; plot(d_classical(Outoh), doh(Outoh), 'r+"); xlabel('"Mahalanobis Distance’)

ylabel('Robust Distance"; title('DD Plot, Olive-Hawkins method"); hold off

numberl =sum(Outfmcd); number2 =sum(Outogk); number3 =sum(Outoh);

% quality control

x1=u(:,1);x2=u(:,2);x=[x1,x2]; [S M]=robustcov(x,'Method','fmcd"); r=corr(x);s=1; for i=1:m
ml(i,;)=mean(x(s:s+4,:)); s=s+5; end

% PROPOSED CHART

for i=1:m ; d(;,i)=m1(i,:)-M; T(:,i)=n*d(:,i)*inv(S)*d(:,i); end; T;

U=1:m;alfa=.05;df1=K;df2=m*n-m-K+1; tabF=finv(1-alfa,df1,df2);

for i=1:m

UCL(1)=((K*(m-1)*(n-1))/(m*n-m-K+1))*tabF; LCL(i)=0;

end

plot(U,T,'bo',U,UCL,-",U,LCL,"-")

R=S(1,2)/(sqrt(S(1,1)*S(2,2))), D=det(S), total=trace(S), AVERAG=M, UCL=UCL(1)
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